The ion temperature gradient (ITG) modes in transport barriers (TBs) of tokamak plasmas are numerically studied with a code solving gyrokinetic integral eigenvalue equations in toroidal configurations. It is found that multiple ITG modes with conventional and unconventional transport are analyzed based on quasi-linear mixing length estimations.
Ion internal transport barriers (iITBs) are first observed in neutral beam injection (NBI) heated plasmas at the HL-2A tokamak. The position of the barrier foot, in the stationary state, coincides with the q = 1 surface within its uncertainty of measurement. iITBs can develop more easily at the beginning of NBI heating. Also, iITBs are unstable for the sawtooth plasma. Simulations reveal that the thermal diffusivity of ions (χ i) inside the barrier can be as low as the neoclassical level. It is observed that the flow shear in the stationary iITB state reaches the level required for suppressing the ion temperature gradient mode instability, which indicates the important role of flow shear in sustaining the iITB.
The effects of impurity ions on the trapped electron mode (TEM) in tokamak plasmas are numerically investigated with the gyrokinetic integral eigenmode equation. It is shown that in the case of large electron temperature gradient (ηe), the impurity ions have stabilizing effects on the TEM, regardless of peaking directions of their density profiles for all normalized electron density gradient R/Lne. Here, R is the major radius and Lne is the electron density gradient scale length. In the case of intermediate and/or small ηe, the light impurity ions with conventional inwardly (outwardly) peaked density profiles have stabilizing effects on the TEM for large (small) R/Lne, while the light impurity ions with steep inwardly (outwardly) peaked density profiles can destabilize the TEM for small (large) R/Lne. Besides, the TEM driven by density gradient is stabilized (destabilized) by the light carbon or oxygen ions with inwardly (outwardly) peaked density profiles. In particular, for flat and/or moderate R/Lne, two independent unstable modes, corresponding respectively to the TEM and impurity mode, are found to coexist in plasmas with impurity ions of outwardly peaked density profiles. The high Z tungsten impurity ions play a stronger stabilizing role in the TEM than the low Z impurity ions (such as carbon and oxygen) do. In addition, the effects of magnetic shear and collision on the TEM instability are analyzed. It is shown that the collisionality considered in this work weakens the trapped electron response, leading to a more stable TEM instability, and that the stabilizing effects of the negative magnetic shear on the TEM are more significant when the impurity ions with outwardly peaked density profile are taken into account.
In HL-2A and J-TEXT ohmic confinement regimes, an electrostatic turbulence with quasi-coherent characteristics in spectra of density fluctuations was observed by multi-channel microwave reflectometers. These quasi-coherent modes (QCMs) were detectable in a large plasma region (r/a∼0.3−0.8). The characteristic frequencies of QCMs were in the range of 30–140 kHz. The mode is rotated in the electron diamagnetic direction. In the plasmas with QCMs, trapped electron mode (TEM) was predicted to be unstable by gyrokinetic simulations. The combined experimental results show that the TEM is survived in the linear ohmic confinement regime of plasmas. The quasi-coherent TEM was replaced by broad-band fluctuations when the plasma transits from linear to saturated ohmic confinement regime. The observation was strongly related to the turbulence transition from TEM to ion temperature gradient mode. A critical gradient threshold for TEM excitation in electron temperature gradient was directly found. The effect of TEM on density profile peaking was presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.