Abstract-Machine-to-Machine (M2M) communication is now playing a market-changing role in a wide range of business world. However, in event-driven M2M communications, a large number of devices activate within a short period of time, which in turn causes high radio congestions and severe access delay. To address this issue, we propose a Fast Adaptive S-ALOHA (FASA) scheme for M2M communication systems with bursty traffic. The statistics of consecutive idle and collision slots, rather than the observation in a single slot, are used in FASA to accelerate the tracking process of network status. Furthermore, the fast convergence property of FASA is guaranteed by using drift analysis. Simulation results demonstrate that the proposed FASA scheme achieves near-optimal performance in reducing access delay, which outperforms that of traditional additive schemes such as PB-ALOHA. Moreover, compared to multiplicative schemes, FASA shows its robustness even under heavy traffic load in addition to better delay performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.