SummaryGut microbiota can influence the aging process and may modulate aging‐related changes in cognitive function. Trimethylamine‐N‐oxide (TMAO), a metabolite of intestinal flora, has been shown to be closely associated with cardiovascular disease and other diseases. However, the relationship between TMAO and aging, especially brain aging, has not been fully elucidated. To explore the relationship between TMAO and brain aging, we analysed the plasma levels of TMAO in both humans and mice and administered exogenous TMAO to 24‐week‐old senescence‐accelerated prone mouse strain 8 (SAMP8) and age‐matched senescence‐accelerated mouse resistant 1 (SAMR1) mice for 16 weeks. We found that the plasma levels of TMAO increased in both the elderly and the aged mice. Compared with SAMR1‐control mice, SAMP8‐control mice exhibited a brain aging phenotype characterized by more senescent cells in the hippocampal CA3 region and cognitive dysfunction. Surprisingly, TMAO treatment increased the number of senescent cells, which were primarily neurons, and enhanced the mitochondrial impairments and superoxide production. Moreover, we observed that TMAO treatment increased synaptic damage and reduced the expression levels of synaptic plasticity‐related proteins by inhibiting the mTOR signalling pathway, which induces and aggravates aging‐related cognitive dysfunction in SAMR1 and SAMP8 mice, respectively. Our findings suggested that TMAO could induce brain aging and age‐related cognitive dysfunction in SAMR1 mice and aggravate the cerebral aging process of SAMP8 mice, which might provide new insight into the effects of intestinal microbiota on the brain aging process and help to delay senescence by regulating intestinal flora metabolites.
Objective-Impaired coronary blood flow (CF) or flow reserve with incomplete and delayed recovery of left ventricular (LV) function after revascularization is common in severe ischemic LV dysfunction. The underlying mechanism is not fully known. We studied structural changes of small intramyocardial coronary arteries (SIMCAs) in a pig model of chronic coronary stenosis, testing the hypothesis that microvascular remodeling develops distally to a severe epicardial coronary artery stenosis. Methods and Results-A total of 24 pigs were studied in 3 groups. Left anterior descending coronary stenosis was created to reduce CF by a mean of Ϸ30%, producing severe regional systolic dysfunction without infarction. The stenosis was maintained for 7 days in 6 pigs (Group 1) and for 4 weeks in 12 pigs (Group 2). The control group (Group 3) consisted of 6 pigs with the same surgical procedures but without stenosis. The wall thickness (WTa) and lumen (L) diameter of SIMCA were measured, and the ratio of WTa/L and lumen area/total vessel area (% lumen) were calculated. The composition of the arterial wall was studied with cell proliferation markers Ki67 and BrdU. The immediate reduction in CF after the creation of the stenosis was similar in both study groups, but after the first week, CF decreased significantly (PϽ0.05) when the stenosis was maintained (group 2). The left anterior descending stenosis caused regional LV dysfunction in all pigs (groups 1 and 2). After 4 weeks of stenosis with chronic myocardial hibernation (group 2), but not after 1 week (group 1), WTa and WTa/L increased and L decreased significantly in the chronic hibernating region located distally to the stenosis, compared with both the control (group 3) and the normal region in the same pig. The mean % lumen of SIMCA per pig correlated with the CF reduction (rϭ0.92, PϽ0.001) and with myocardial fibrosis (rϭ0.82, PϽ0.01) in the 4-week stenosis group. Ki67-and BrdU-positive cells were increased in the wall of SIMCA in Group 1 and 2 compared with the control group (PϽ0.01 for each). The proliferated cells were stained positively with smooth muscle ␣-actin antibody. Conclusion-In the chronic ischemic, hibernating myocardial region distal to a flow-limiting epicardial coronary stenosis, the small intramyocardial coronary arteries undergo remodeling, with an increase in wall thickness and a decrease in lumen. These structural changes may further restrict blood flow to ischemic myocardium and may account for the pathophysiologic impairment of CF or flow reserve after revascularization, which leads to delayed or incomplete recovery of myocardial function. (Arterioscler Thromb Vasc Biol. 2002;22
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.