The adsorption/desorption characteristics for light and heavy rare earth elements (REEs) on halloysite and illite (which are beneficial for the utilization of ion-adsorption RE ore) were systematically investigated and compared. Additionally, halloysite and illite were fully charactered by XRD, SEM, microscope, zeta potential, nitrogen adsorption–desorption isotherms and buffer pH to build the relationship between adsorption/desorption mechanisms and the minerals’ properties. The results of experiments show that the adsorption rate of halloysite is higher than illite, although they are both very fast and follow the pseudo-second-order kinetic model. The adsorption capacity of halloysite and illite increases with an increase in adsorption pH and remains constant when pH is higher than 4. Due to the narrow interlamellar spacing of halloysite and the fact that it is a nanotube, RE ions are adsorbed only through electrostatic attraction, whereas the adsorption and desorption pH have a significant effect on the recovery of RE ions from illite, because of the diverse adsorption mechanism. The results illustrated that the structure and surface properties of clays are also the key factors that affect RE ions leaching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.