Ape1 is an important redox protein, essential for specific cytokine-induced signal transduction. Ape1 signaling is also important in regulating the growth of cancer cells, including colon cancer cells. The present study investigated whether Ape1 signaling plays a role in the regulation of colon cancer stem cell (CCSC) growth. The results showed that Ape1 was aberrantly expressed in CCSCs, as determined by quantitative (q)PCR assay. A laser confocal microscopy assay demonstrated that the Ape1 protein was mainly distributed in the nuclei, but not the cytoplasm, of the CSCs. Treatment of CCSCs with Ape1 redox inhibitor (E3330) significantly affected growth in vitro. In colon cancer xenograft mice, in vivo administration of E3330 enhanced tumor responses to the chemotherapeutic drug, 5-fluorouracil (5-FU). Furthermore, the combination of E3330 and 5-FU evidently increased the cytotoxicity of 5-FU in CSC growth. In the qPCR assay, the CCSCs were demonstrated to express the dominant ATP-binding cassette sub-family G member 2 (ABC-G2), but not the multidrug resistance 1, genes. Thus, we hypothesized that drug resistance in CCSCs is mediated by ABC-G2. Since CSCs are involved in cancer metastasis, the Ape1 inhibitor may be a potential agent in the inhibition of colon cancer growth and metastasis.
LIGHT is a cytokine belonging to the TNF family. This cytokine has been extensively defined in its role on T-cell regulation and dendritic cell maturation. It also exhibits the role in liver regeneration. We recently identified its role in regulation of hematopoietic stem cell differentiation. However, the question whether this cytokine regulates mesenchymal stem cells (MSCs) proliferation and/or differentiation remains unknown. In this study, we observed that MSCs express LT-βR but not HVEM. PCR analysis show LIGHT mRNA is undectable in MSCs. LIGHT did promote neither MSCs proliferation nor migration. However, LIGHT promoted MSCs differentiation into adipocyte which was confirmed by Oil Red O Staining Assay. Since either MSCs or adipocytes are the major cell population in bone marrow niche, we then suggest that LIGHT regulate bone marrow niche, such as MSCs differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.