Sleep is an essential and evolutionarily conserved behavior that is closely related to synaptic function. However, whether neuroligins (Nlgs), which are cell adhesion molecules involved in synapse formation and synaptic transmission, are involved in sleep is not clear. Here, we show that Drosophila Nlg4 (DNlg4) is highly expressed in large ventral lateral clock neurons (l-LNvs) and that l-LNv-derived DNlg4 is essential for sleep regulation. GABA transmission is impaired in mutant l-LNv, and sleep defects in dnlg4 mutant flies can be rescued by genetic manipulation of GABA transmission. Furthermore, dnlg4 mutant flies exhibit a severe reduction in GABA A receptor RDL clustering, and DNlg4 associates with RDLs in vivo. These results demonstrate that DNlg4 regulates sleep through modulating GABA transmission in l-LNvs, which provides the first known link between a synaptic adhesion molecule and sleep in Drosophila.
The timing of sleep is tightly governed by the circadian clock, which contains a negative transcriptional feedback loop and synchronizes the physiology and behavior of most animals to daily environmental oscillations. However, how the circadian clock determines the timing of sleep is largely unclear. In vertebrates and invertebrates, the status of sleep and wakefulness is modulated by the electrical activity of pacemaker neurons that are circadian regulated and suppressed by inhibitory GABAergic inputs. Here, we showed that Drosophila GABA receptors undergo rhythmic degradation in arousal-promoting large ventral lateral neurons (lLNvs) and their expression level in lLNvs displays a daily oscillation. We also demonstrated that the E3 ligase Fbxl4 promotes GABA receptor ubiquitination and degradation and revealed that the transcription of fbxl4 in lLNvs is CLOCK dependent. Finally, we demonstrated that Fbxl4 regulates the timing of sleep through rhythmically reducing GABA sensitivity to modulate the excitability of lLNvs. Our study uncovered a critical molecular linkage between the circadian clock and the electrical activity of pacemaker neurons and demonstrated that CLOCK-dependent Fbxl4 expression rhythmically downregulates GABA receptor level to increase the activity of pacemaker neurons and promote wakefulness.
Neurexins are cell adhesion molecules involved in synaptic formation and synaptic transmission. Mutations in neurexin genes are linked to autism spectrum disorders (ASDs), which are frequently associated with sleep problems. However, the role of neurexin-mediated synaptic transmission in sleep regulation is unclear. Here, we show that lack of the Drosophila α-neurexin homolog significantly reduces the quantity and quality of nighttime sleep and impairs sleep homeostasis. We report that neurexin expression in Drosophila mushroom body (MB) αβ neurons is essential for nighttime sleep. We demonstrate that reduced nighttime sleep in neurexin mutants is due to impaired αβ neuronal output, and show that neurexin functionally couples calcium channels (Cac) to regulate synaptic transmission. Finally, we determine that αβ surface (αβs) neurons release both acetylcholine and short neuropeptide F (sNPF), whereas αβ core (αβc) neurons release sNPF to promote nighttime sleep. Our findings reveal that neurexin regulates nighttime sleep by mediating the synaptic transmission of αβ neurons. This study elucidates the role of synaptic transmission in sleep regulation, and might offer insights into the mechanism of sleep disturbances in patients with autism disorders.
The Drosophila visual transduction is the fastest known G protein-coupled signaling cascade and has been served as a model for understanding the molecular mechanisms of other G protein-coupled signaling cascades. Numbers of components in visual transduction machinery have been identified. Based on the functional characterization of these genes, a model for Drosophila phototransduction has been outlined, including rhodopsin activation, phosphoinoside signaling, and the opening of TRP and TRPL channels. Recently, the characterization of mutants, showing slow termination, revealed the physiological significance and the mechanism of rapid termination of light response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.