Abstract-This paper presents a map-guided sea ice classification system built to work in parallel with the Canadian Ice Service (CIS) operations to produce pixel-based ice maps that complement actual "egg code" maps produced by CIS. The system uses the CIS maps as input to guide classification by providing information on the number of ice types and their final label for specific regions. Segmentation is based on a modified adaptive Markov random field (MRF) model that uses synthetic aperture radar (SAR) intensities and texture features as input. The ice type labeling is performed automatically by gathering evidences based on a priori information on one or two classes and deducing the other labels iteratively by comparing distributions of segments. Three methods for comparing the segment distributions (Fisher criterion, Mahalanobis distance, and Kolmogorov-Smirnov test) were implemented and compared. The system is fully described with special attention to the labeling procedure. Examples are presented in the form of two CIS SAR-based ice maps from the Gulf of Saint Lawrence region and one example from the Beaufort Sea. The results indicate that when the segmentation is good, the labeling attains best results (between 71% and 89%) based on evaluation by a sea ice analyst. Some problems remain to be assessed which are primarily attributable to discrepancies in the information provided by the egg code and what is actually visible in the SAR image. Subscale information on floe size and shape available to human analysts, but not in this classification system, also appear to be a critical information for separating some ice types.
The operational segmentation of SAR sea ice imagery is a practical, challenging objective in the realm of applied pattern recognition. This research is in support of operational activities at the Canadian Ice Services (CIS), a government agency that monitors all ice-infested regions under Canadian jurisdiction. This paper uses a fusion of tone and texture to segment SAR sea ice images in an unsupervised manner. A novel Markov random field (MRF) segmentation technique is employed and produces improved results over K-means and the traditional MRF implementation.
A simple Markov random field model with a new implementation scheme is proposed for unsupervised image segmentation based on image features. The traditional two-component MRF model for segmentation requires training data to estimate necessary model parameters and is thus unsuitable for unsupervised segmentation. The new implementation scheme solves this problem by introducing a function-based weighting parameter between the two components. Using this method, the simple MRF model is able to automatically estimate model parameters and produce accurate unsupervised segmentation results. Experiments demonstrate that the proposed algorithm is able to segment various types of images (gray scale, color, texture) and achieves an improvement over the traditional method.
Abstract-Features based on Markov random field (MRF) models are sensitive to texture rotation. This paper develops an anisotropic circular Gaussian MRF (ACGMRF) model for retrieving rotation-invariant texture features. To overcome the singularity problem of the least squares estimate method, an approximate least squares estimate method is designed and implemented. Rotation-invariant features are obtained from the ACGMRF model parameters using the discrete Fourier transform. The ACGMRF model is demonstrated to be a statistical improvement over three published methods. The three methods include a Laplacian pyramid, an isotropic circular GMRF (ICGMRF), and gray level cooccurrence probability features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.