The wide use of metal-based nanoparticles (MNPs) will inevitably lead to their release into soil, and consequently affect the quality and ecological functions of soil environments. In this study, two paddy soils with different properties were exposed to CuO NPs to evaluate the transformation of CuO NPs and their effects on soil properties and components. The results of single chemical extraction and X-ray absorption fine structure analysis showed that CuO NPs could release Cu ions once being applied into the flooding paddy soil and then progress toward the more stable forms (Cu2S and Cu(OH)2). CuO NPs could change the soil properties by increasing the pH and Eh of the lower organic matter-soil rather than those of the higher organic matter-soil. Furthermore, we found that the 1000 mg/kg CuO NPs could accelerate the degradation or mineralization of the organic matter, as well as the Fe reduction process, by increasing the Fe(II) content by 293% after flooding for 60 days in the lower organic matter soil. The microbial biomass in both soils was severely inhibited by CuO NPs and the organic matter could partly mitigate the negative effects of CuO NPs.
Natural organic matter (NOM) can interact with engineered nanoparticles (NPs) in the environment and modify their behavior and toxicity to organisms. In the present study, the phytotoxicity of copper oxide (CuO) NPs to rice seedlings in the presence of humic acid as a model NOM was investigated. The results showed that CuO NPs induced the inhibition of root elongation, aberrations in root morphology and ultrastructure, and losses of cell viability and membrane integrity. The adverse effects partly resulted from the generation of reactive oxygen species caused by CuO NPs, which led to lipid peroxidation, mitochondrial dysfunction, and programmed cell death in rice seedlings. However, all the phytotoxicity was alleviated with the addition of humic acid because humic acid coatings on nanoparticle surfaces enhanced electrostatic and steric repulsion between the CuO NPs and the plant cell wall/membrane, reducing contact between NPs and plant and CuO NP-induced oxidative damage to plant cells. The present study's results shed light on the mechanism underlying NP phytotoxicity and highlight the influence of NOM on the bioavailability and toxicity of NPs.
Engineered nanoparticles (NPs) and natural organic matter (NOM) in the environment may interact with background contaminants such as heavy metals and modify their bioavailability and toxicity. In the present study, the combined influences of 2 common NPs (TiO2 and CeO2 ) and humic acid (HA; as a model NOM) on Cu(II) phytotoxicity to rice were investigated by a 3-d root elongation assay performed on filter paper media. The results showed that the adsorption coefficients of bare TiO2 and CeO2 NPs (100 mg/L) toward Cu(2+) are 2.65 and 4.37, respectively, at an initial concentration of 10 mg/L, suggesting that Cu(II) could be strongly adsorbed by NPs, whereas HA-coated TiO2 and CeO2 NPs further enhanced the adsorption coefficients to 4.37 and 6.85, respectively. In addition, compared with Cu-alone treatment, the addition of bare TiO2 and CeO2 NPs (1000 mg/L) increased the length of rice root by 32.5% and 39.0%, respectively; however, the presence of HA-coated TiO2 and CeO2 NPs increased the root length by 90.2% and 100.1%, respectively, which indicated that the mitigation effect of HA-coated NPs on Cu(II) phytotoxicity was more visible than that of bare NPs. The results demonstrated that coexistence of NPs and HA significantly alleviated Cu(II) phytotoxicity as a result of a decrease in bioavailable soluble Cu(II) concentration, which contributes to an understanding of the potential behavior of NPs in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.