Food security is the basis of social stability and development. Maintaining sufficient amounts of arable land is essential for China's food security. In this paper, we consider the relationship between arable land demand to grain demand and production capacity. The changes in national population, grain production, and consumption from 2000 to 2015 are analyzed. Then, we forecast the respective possible changes in the future and accordingly forecast the arable land demand in different possible situations. The results show that the pressure to maintain sufficient amounts of arable land in 2030 may be greater than that in 2040.The higher pressure is due to larger population and lower production capacity. To ensure food security in China, we insist on maintaining 120 million ha of arable land, the "red line" for food security, and improve the arable land productivity to ensure domestic production and self-sufficiency. In addition, residents should be guided to cultivate sound food consumption habits in order to control per capita grain demand. Lastly, we should also make full use of international resources and markets to relieve the pressure on domestic resources and environments.
To facilitate water management and efficient utilization of water resources, the allocation of water rights to individual industries must be underpinned by a rational and defensible process. This study aimed to develop an improved fuzzy analytic hierarchy process method of allocating water rights to different industries and focused on Qing’an County, northeast China as a case study. An evaluation index system for allocation of initial water rights was established, and incorporated physiographic, societal, economic, and ecological criteria. The system classifies four categories of second-level indices, 14 third-level indices, and 30 fourth-level indices. The order of priority of the evaluation index was determined and the total weight of initial water rights for different industries was calculated using the fuzzy analytic hierarchy process method. Results showed that the indices for the allocation of initial water rights ranked in descending order of their total weights coefficient were: (1) agricultural water rights: 0.9508; (2) residential water rights: 0.0240; (3) water rights for non-agricultural production: 0.0173; (4) environmental water rights: 0.0078. Agricultural water consumption accounted for the largest proportion of total water because the study area is a major grain production area. The study provides a theoretical basis for the allocation of water rights and water rights trading in northeast China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.