Wild barley germplasms are a treasure trove of useful genes and provide rich sources of genetic variation for crop improvement. We carried out a hydroponic and pot evaluation of diverse germplasms in response to drought stress using 47 Tibet annual wild barley genotypes. Our results from the hydroponic experiment showed that SPAD (soilplant analyses development analyses, based on chlorophyll meter readings), plant height, and biomass of shoot/root were significantly reduced in plants exposed to drought stress (exposure of plant roots to air for 6 h daily for a period of 7 days) compared with control plants. There were significant differences among the 47 wild barley genotypes in terms of the reduction in these growth parameters, with variation coefficients and diversity indexes ranging from 23.2 to 49.1% and 1.46 to 1.62, respectively, suggesting a rich genetic diversity among the tested accessions. Genotypes XZ5 and XZ150 showed the least reduction, indicating their high tolerance to drought stress, while genotypes XZ54 and XZ147 showed the greatest reduction, and drought stress symptoms appeared rapidly and severely in these latter genotypes. The trends in the different responses of these genotypes to drought stress were fairly consistent in both the hydroponic and the two pot selection experiments, with XZ5 and XZ150 screened as drought-resistant genotypes and XZ54, XZ147 as drought-sensitive ones. Significant genotypic differences in leaf soluble sugar content and water use efficiency in response to drought stress were also observed in pot experiment two, with the droughttolerant genotype XZ5 showing a markedly higher recovery and the two drought-sensitive genotypes XZ54 and XZ147 showing a markedly lower recovery than the control plants.
Aluminum (Al) toxicity is a major limiting factor for plant production in acid soils. Wild barley germplasm is rich in genetic diversity and may provide elite genes for crop Al tolerance improvement. The hydroponic-experiments were performed to compare proteomic and transcriptional characteristics of two contrasting Tibetan wild barley genotypes Al- resistant/tolerant XZ16 and Al-sensitive XZ61 as well as Al-resistant cv. Dayton. Results showed that XZ16 had less Al uptake and translocation than XZ61 and Dayton under Al stress. Thirty-five Al-tolerance/resistance-associated proteins were identified and categorized mainly in metabolism, energy, cell growth/division, protein biosynthesis, protein destination/storage, transporter, signal transduction, disease/defense, etc. Among them, 30 were mapped on barley genome, with 16 proteins being exclusively up-regulated by Al stress in XZ16, including 4 proteins (S-adenosylmethionine-synthase 3, ATP synthase beta subunit, triosephosphate isomerase, Bp2A) specifically expressed in XZ16 but not Dayton. The findings highlighted the significance of specific-proteins associated with Al tolerance, and verified Tibetan wild barley as a novel genetic resource for Al tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.