Influenza viruses have been posing a great threat to public health and animal industry. The developed vaccines have been widely used to reduce the risk of potential pandemic; however, the ongoing antigenic drift makes influenza virus escape from host immune response and hampers vaccine efficacy. Until now, the genetic basis of antigenic variation remains largely unknown. In this study, we used A/swine/Guangxi/18/2011 (GX/18) and A/swine/Guangdong/104/2013 (GD/104) as models to explore the molecular determinant for antigenic variation of Eurasian avianlike H1N1 (EA H1N1) swine influenza viruses (SIVs) and found that the GD/104 virus exhibited 32-to 64-fold lower antigenic cross-reactivity with antibodies against GX/18 virus. Therefore, we generated polyclonal antibodies against GX/18 or GD/104 virus and a monoclonal antibody (mAb), named mAb102-95, targeted to the haemagglutinin (HA) protein of GX/18 virus and found that a single amino acid substitution at position 158 in HA protein substantially altered the antigenicity of the virus. The reactivity of GX/18 virus containing G158E mutation with the mAb102-95 decreased eightfold than that of the parental strain. Contrarily, the reactivity of GD/104 virus bearing E158G mutation with the mAb102-95 increased by 32 times as compared with that of the parental virus. Structural analysis showed that the amino acid mutation from G to E was accompanied with the R group changing from -H to -(CH 2 ) 2 -COOH. The induced steric effect and increased hydrophilicity of HA protein surface probably jointly contributed to the antigenic drift of EA H1N1 SIVs. Our study provides experimental evidence that G158E mutation in HA protein affects the antigenic property of EA H1N1 SIVs and widens our horizon on the antigenic drift of influenza virus.
Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future.
This paper discusses voltage stability enhancement by a nonlinear Static VarCompensator (SVC) controller. The proposed controller is designed through direct feedback linearization (DFL) technique. The eOE ectiveness of the controller on voltage stability enhancement is studied on a three-machine nine-bus power system. It is found that voltage stability region is expanded signi cantly by the nonlinear SVC control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.