Progression of solid tumors to the metastatic stage is accountable for the majority of cancer-related deaths. Further understanding of the molecular mechanisms governing metastasis is essential for the development of antimetastatic regimens. Here, we aimed to identify Rac activators that could promote metastasis downstream of human epithelial growth factor receptor 2 (HER2). We investigated if Dedicator of Cytokinesis 1 (DOCK1), based on its evolutionarily conserved role in receptor tyrosine kinases (RTKs)-mediated Rac activation and cell invasion, could be a regulator of metastasis. We report that high expression of DOCK1 in HER2 + and basal breast cancer subtypes inversely correlates with human patients' survival. Mechanistically, DOCK1 interacts with HER2 and promotes HER2-induced Rac activation and cell migration. To gain further insight, we developed a HER2 breast cancer mouse model with mammary-gland-specific inactivation of DOCK1. In this in vivo model, a significant decrease in tumor growth and metastasis in lungs was found in animals where DOCK1 is inactivated. Furthermore, we found that DOCK1 is required for maximal activation of two HER2 effectors, c-JUN and STAT3. Using an unbiased gene profiling approach, we identified a mammary tumor DOCK1-associated gene signature enriched for genes implicated in response to IFN type I. This analysis revealed a unique set of genes, including Receptor Transporter Protein 4 (RTP4) and STAT1, for which the expression levels can be used to independently predict breast cancer outcome in HER2 + patients. Our work demonstrates DOCK1-Rac signaling as an HER2 effector pathway essential for HER2-mediated breast cancer progression to metastasis and offers a therapeutic opportunity to limit the spread of metastatic breast cancers.ErbB2 | DOCK180 | RhoGEF | tumorigenesis D espite breakthroughs in the treatment of breast cancer, the most prevalent cancer in women, progression of the disease remains an important cause of death. Virtually all fatalities can be attributed to complications due to the appearance of secondary tumors at distant sites. The identification and therapeutic targeting of proteins regulating the metastatic step is therefore a priority for improving the lifespan of afflicted patients (1). Two major breast cancer subtypes, basal-like and HER2 + , are linked to aggressive and recurrent primary and metastatic tumors, and ultimately, to poor survival (2). HER2 is a member of the EGF receptor family of receptor tyrosine kinases (RTKs) also comprising HER1, HER3, and HER4 (3). Amplification of the HER2 locus, or aberrant expression of its protein product, is observed in nearly 20% of human breast cancers (4). Mouse models expressing various forms of HER2 in the mammary gland recapitulate most aspects of the human disease, including metastasis, and are powerful tools to gain insight into signaling pathways controlling tumorigenesis in vivo (5). Nonetheless, regulators of HER2-mediated metastasis remain poorly characterized.Metastasis is a complex and deadly, yet ine...
Throughout life, the tight equilibrium between cell death and the prompt clearance of dead corpses is required to maintain a proper tissue homeostasis and prevent inflammation. Following lactation, mammary gland involution is triggered and results in the death of excessive epithelial cells that are rapidly cleared by phagocytes to ensure that the gland returns to its prepregnant state. Orthologs of Dock1 (dedicator of cytokinesis 1), Elmo and Rac1 (ras-related C3 botulinum toxin substrate 1) in Caenorhabditis elegans are part of a signaling module in phagocytes that is linking apoptotic cell recognition to cytoskeletal reorganization required for engulfment. In mammals, Elmo1 was shown to interact with the phosphatidylserine receptor Bai1 and relay signals to promote phagocytosis of apoptotic cells. Still, the role of the RacGEF Dock1 in the clearance of dying cells in mammals was never directly addressed. We generated two mouse models with conditional inactivation of Dock1 and Rac1 and revealed that the expression of these genes is not essential in the mammary gland during puberty, pregnancy and lactation. We induced mammary gland involution in these mice to investigate the role of Dock1/Rac1 signaling in the engulfment of cell corpses. Unpredictably, activation of Stat3 (signal transducer and activator of transcription 3), a key regulator of mammary gland involution, was impaired in the absence of Rac1 and Dock1 expression. Likewise, failure to activate properly Stat3 was coinciding with a significant delay in the initiation and progression of mammary gland involution in mutant animals. By using an in vitro phagocytosis assay, we observed that Dock1 and Rac1 are essential to mediate engulfment in epithelial phagocytes. In vivo, cell corpses accumulated at late time points of involution in Dock1 and Rac1 mutant mammary glands. Overall, our study demonstrated an unsuspected role for Dock1/Rac1 signaling in the initiation of mammary gland involution, and also suggested a role for this pathway in the clearance of dead cells by epithelial phagocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.