Building Information Modeling (BIM) is the process of structuring, capturing, creating, and managing a digital representation of physical and/or functional characteristics of a built space [1]. Current BIM has limited ability to represent dynamic semantics, social information, often failing to consider building activity, behavior and context; thus limiting integration with intelligent, built-environment management systems. Research, such as the development of Semantic Exchange Modules, and/or the linking of IFC with semantic web structures, demonstrates the need for building models to better support complex semantic functionality. To implement model semantics effectively, however, it is critical that model designers consider semantic information constructs. This paper discusses semantic models with relation to determining the most suitable information structure. We demonstrate how semantic rigidity can lead to significant long-term problems that can contribute to model failure. A sufficiently detailed feasibility study is advised to maximize the value from the semantic model. In addition we propose a set of questions, to be used during a model's feasibility study, and guidelines to help assess the most suitable method for managing semantics in a built environment.
Health care provision is significantly impacted by the ability of the health providers to engineer a viable healthcare space to support care stakeholders needs. In this paper we discuss and propose use of organisational semiotics as a set of methods to link stakeholders to systems, which allows us to capture clinician activity, information transfer, and building use; which in tern allows us to define the value of specific systems in the care environment to specific stakeholders and the dependence between systems in a care space. We suggest use of a semantically enhanced building information model (BIM) to support the linking of clinician activity to the physical resource objects and space; and facilitate the capture of quantifiable data, over time, concerning resource use by key stakeholders. Finally we argue for the inclusion of appropriate stakeholder feedback and persuasive mechanism, to incentivise building user behaviour to support organisational level sustainability policy.
Even minor changes in user activity can bring about significant energy savings within built space. Many building performance assessment methods have been developed, however these often disregard the impact of user behavior (i.e. the social, cultural and organizational aspects of the building). Building users currently have limited means of determining how sustainable they are, in context of the specific building structure and/or when compared to other users performing similar activities, it is therefore easy for users to dismiss their energy use. To support sustainability, buildings must be able to monitor energy use, identify areas of potential change in the context of user activity and provide contextually relevant information to facilitate persuasion management. If the building is able to provide users with detailed information about how specific user activity that is wasteful, this should provide considerable motivation to implement positive change. This paper proposes using a dynamic and temporal semantic model, to populate information within a model of persuasion, to manage user change. By semantically mapping a building, and linking this to persuasion management we suggest that: i) building energy use can be monitored and analyzed over time; ii) persuasive management can be facilitated to move user activity towards sustainability.
Health care provision is significantly impacted by the ability of health providers to engineer a viable healthcare space to support care stakeholders needs. In this chapter, the authors discuss and propose use of organisational semiotics as a set of methods to link stakeholders to systems, which allows them to capture data about clinician activity, information transfer, and building use, which in turn allows them to define the value of specific systems in the care environment to specific stakeholders and the dependence between systems in a care space. The authors suggest use of a semantically enhanced Building Information Model (BIM) to support the linking of clinician activity to the physical resource objects and space and facilitate the capture of quantifiable data over time or in relation to key stakeholders. Finally, the authors argue for the inclusion of appropriate stakeholder feedback and persuasive mechanisms to incentivise building user behaviour to support organisational level sustainability policy.
Learning the spatial layout of an environment is critical to domains including military and emergency personnel training. Training all staff within a real-world space, however, cannot practically be achieved, particularly if space is under-development or potentially unsafe. This paper contributes towards a better understanding of how individual difference factors impact upon the exposure time requirements needed to acquire spatial knowledge from a virtual environment.. The impact of this research is of direct relevance to mulsemedia domain since it shows how individual differences impact information assimilation; showing that user information assimilation, and therefore feedback, must be personalised for individual needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.