T cell activation requires contact with APCs. We used optical techniques to demonstrate T cell polarity on the basis of shape, motility, and localized sensitivity to antigen. An intracellular Ca2+ clamp showed that T cell shape and motility are extremely sensitive to changes in [Ca2+]i (Kd = 200 nM), with immobilization and rounding occurring via a calcineurin-independent pathway. Ca2+ dependent immobilization prolonged T cell contact with the antigen-presenting B cell; buffering the [Ca2+]i signal prevented the formation of stable cell pairs. Optical tweezers revealed spatial T cell sensitivity to antigen by controlling placement on the T cell surface of either B cells or alpha-CD3 MAb-coated beads. T cells were 4-fold more sensitive to contact made at the leading edge of the T cell compared with the tail. We conclude that motile T cells are polarized antigen sensors that respond physically to [Ca2+]i signals to stabilize their interaction with APCs.
In rat basophilic leukemia (RBL) cells and Jurkat T cells, Ca2+ release–activated Ca2+ (CRAC) channels open in response to passive Ca2+ store depletion. Inwardly rectifying CRAC channels admit monovalent cations when external divalent ions are removed. Removal of internal Mg2+ exposes an outwardly rectifying current (Mg2+-inhibited cation [MIC]) that also admits monovalent cations when external divalent ions are removed. Here we demonstrate that CRAC and MIC currents are separable by ion selectivity and rectification properties: by kinetics of activation and susceptibility to run-down and by pharmacological sensitivity to external Mg2+, spermine, and SKF-96365. Importantly, selective run-down of MIC current allowed CRAC and MIC current to be characterized under identical ionic conditions with low internal Mg2+. Removal of internal Mg2+ induced MIC current despite widely varying Ca2+ and EGTA levels, suggesting that Ca2+-store depletion is not involved in activation of MIC channels. Increasing internal Mg2+ from submicromolar to millimolar levels decreased MIC currents without affecting rectification but did not alter CRAC current rectification or amplitudes. External Mg2+ and Cs+ carried current through MIC but not CRAC channels. SKF-96365 blocked CRAC current reversibly but inhibited MIC current irreversibly. At micromolar concentrations, both spermine and extracellular Mg2+ blocked monovalent MIC current reversibly but not monovalent CRAC current. The biophysical characteristics of MIC current match well with cloned and expressed TRPM7 channels. Previous results are reevaluated in terms of separate CRAC and MIC channels.
We used whole-cell recording to characterize ion permeation, rectification, and block of monovalent current through calcium release-activated calcium (CRAC) channels in Jurkat T lymphocytes. Under physiological conditions, CRAC channels exhibit a high degree of selectivity for Ca2+, but can be induced to carry a slowly declining Na+ current when external divalent ions are reduced to micromolar levels. Using a series of organic cations as probes of varying size, we measured reversal potentials and calculated permeability ratios relative to Na+, P X/P Na, in order to estimate the diameter of the conducting pore. Ammonium (NH4 +) exhibited the highest relative permeability (P NH4/P Na = 1.37). The largest permeant ion, tetramethylammonium with a diameter of 0.55 nm, had P TMA/P Na of 0.09. N-methyl-d-glucamine (0.50 × 0.64 × 1.20 nm) was not measurably permeant. In addition to carrying monovalent current, NH4 + reduced the slow decline of monovalent current (“inactivation”) upon lowering [Ca2+]o. This kinetic effect of extracellular NH4 + can be accounted for by an increase in intracellular pH (pHi), since raising intracellular pH above 8 reduced the extent of inactivation. In addition, decreasing pHi reduced monovalent and divalent current amplitudes through CRAC channels with a pKa of 6.8. In several channel types, Mg2+ has been shown to produce rectification by a voltage-dependent block mechanism. Mg2+ removal from the pipette solution permitted large outward monovalent currents to flow through CRAC channels while also increasing the channel's relative Cs+ conductance and eliminating the inactivation of monovalent current. Boltzmann fits indicate that intracellular Mg2+ contributes to inward rectification by blocking in a voltage-dependent manner, with a zδ product of 1.88. Ca2+ block from the outside was also found to be voltage dependent with zδ of 1.62. These experiments indicate that the CRAC channel, like voltage-gated Ca2+ channels, achieves selectivity for Ca2+ by selective binding in a large pore with current–voltage characteristics shaped by internal Mg2+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.