This paper presents a new method for solving a nonlinear exterior boundary value problem arising in two-dimensional elasto-plasticity. The procedure is based on the introduction of a sufficiently large circle that divides the exterior domain into a bounded region and an unbounded one. This allows us to consider the Dirichlet-Neumann mapping on the circle, which provides an expficit formula for the stress in terms of the displacement by using an appropriate infinite Fourier series. In this way we can reduce the original problem to an equivalent nonlinear boundary value problem on the bounded domain with a natural boundary condition on the circle. Hence, the resulting weak formulation includes boundary and field terms, which yields the so called boundary-field equation method. Next, we employ the finite Fourier series to obtain a sequence of approximating nonlinear problems from which the actual Galerkin schemes are derived. Finally, we apply some tools from monotone operators to prove existence, uniqueness and approximation results, including Cea type error estimates for the corresponding discrete solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.