Nanofiber unique characteristics and potential applications offer innovative strategies and opportunities for sustainable energy production, and for creative solutions to biomedical, healthcare, and environmental problems. This review summarizes the history and development of nanofiber technology, their unique properties, fabrication techniques (using spinning and nonspinning approaches), and emerging applications in energy harvesting and storage, environmental protection and improvement, and biomedical technology and healthcare.Nanofibers are currently used as electrode and membrane materials for batteries, supercapacitors, fuel cells, and solar cells. Nanofiber membranes are also successfully used for ultra-high air filtration, wastewater treatment, water purification, and blood purification at low pressure. This review will describe the different types of nanostructured fibers (e.g., solid, mesoporous, hollow, core-shell nanofibers) fabricated from natural and synthetic polymers, metal and metal oxides, carbon-based, inorganic-organic hybrid nanofibers and their potential applications. Moreover, it will highlight the current and future research needs in nanofiber-based materials to improve and broaden their applications and commercialization.
The effect of additives on the LCST phase behavior of aqueous solutions of either poly(N-isopropylacrylamide) (PNIPAM) or poly(vinyl methyl ether) (PVME) has been investigated using high-resolution ultrasonic spectroscopy (HR-US) and modulated temperature differential scanning calorimetry
(MTDSC). Both techniques revealed that the addition of salt causes a decrease in demixing temperature
(T
demix) due to the water-structuring capacity of salt ions. This salting-out effect becomes more pronounced
at high polymer concentration, causing an asymmetric shape of the LCST demixing curve. Conversely,
adding a surfactant results in an increase of T
demix because of the increased solubilization of the polymer
chains. In addition, HR-US provides supplementary information on a molecular level, illustrating that
both types of additives dissimilarly affect the polymer−water hydration structure; i.e., salt ions primarily
dislocate the structured water molecules, whereas surfactants interact with the polymer itself.
Today, fiber-reinforced polymer composites are a standard material in applications where a high stiffness and strength are required at minimal weight, such as aerospace structures, ultralight vehicles, or even flywheels for highly efficient power storage systems. Although fiber-reinforced polymer composites show many advantages compared to other materials, delamination between reinforcing plies remains a major problem limiting further breakthrough. Traditional solutions that have been proposed to toughen the interlaminar region between reinforcing plies have already reached their limit or have important disadvantages such as a high cost or the need for adapted production processes. Recently, electrospun nanofibers have been suggested as a more viable interlaminar toughening method. Although the expected benefits are numerous, the research on composite laminates enhanced with electrospun nanofibrous veils is still very limited. The work that has been done so far is almost exclusively focused on interlaminar fracture toughness tests with different kinds of nanofibers, where typically a trial and error approach has been used. A thorough understanding of the micromechanical fracture mechanisms and the parameters to obtain toughened composites has not been reported as of yet, but it is crucial to advance the research and design highly damage-resistant composites. This article provides such insight by analyzing the nanofiber toughening effect on three different levels for several nanofiber types. Only by combining the results from different levels, a thorough understanding can be obtained. These levels correspond to the hierarchical nature of a composite: the laminate, the interlaminar region, and the matrix resin. It is found that each level corresponds to certain mechanisms that result in a toughening effect. The bridging of microcracks by electrospun nanofibers is the main toughening mechanism resulting in damage resistance. Nevertheless, the way in which the nanofiber bridging mechanism expresses itself is different for each scale and dependent on parameters linked to a certain scale. The multiscale analysis of the toughening mechanisms reported in this paper is therefore crucial for understanding the behavior of nanofiber toughened composites, and as such allows for designing novel, damage-resistant, nanofiber-toughened materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.