Diatoms are a major phylum of phytoplankton biodiversity and a resource considered for biotechnological developments, as feedstock for biofuels and applications ranging from food, human health or green chemistry. They contain a secondary plastid limited by four membranes, the outermost one being connected with the endoplasmic reticulum (ER). Upon nitrogen stress, diatoms reallocate carbon to triacylglycerol storage inside lipid droplets (LDs). The comprehensive glycerolipid and sterol composition and the architecture of diatom LDs are unknown. In Phaeodactylum tricornutum, LDs are in contact with plastid, mitochondria and uncharacterized endomembranes. We purified LDs from nitrogen-starved P. tricornutum cells to high purity level (99 mol% triacylglycerol of total glycerolipids). We used the Stramenopile Lipid Droplet Protein (StLDP) as a previoulsy validated marker for the identity of P. tricornutum LD. Amphipathic lipids surrounding LDs consist of a betaine lipid, diacylglycerylhydroxymethyltrimethyl-β-alanine (0.4 mol%); sulfoquinovosyldiacylglycerol (0.35 mol%); phosphatidylcholine (0.15 mol%) and one sterol, brassicasterol. By contrast with whole cell extracts, the betaine lipid from LDs only contains eicosapentaenoic acid paired with palmitoleic or palmitolenic acids. This polar lipid composition suggests a budding of LDs from the cytosolic leaflet of the plastid outermost membrane. LD pigments reveal a specific accumulation of β-carotene. The LD proteome obtained from three independent biological replicates, based on stringent filtering of extracted data, and following subtraction of proteins downregulated by nitrogen starvation, highlights a core proteome of 86 proteins, including StLDP. LD-associated proteins suggest connections with vesicular trafficking (coatomer, clathrin), cytoskeleton, plastid and mitochondria. Unsuspected LD-associated function include protein synthesis (ribosomes), folding (chaperones), posttranslational modifications and quality control (ubiquitination and ERAD pathway), possibly preparing translation of specific mRNAs. The detection of histone proteins, as previously demonstrated in drosophila embryo LDs, also suggests the storage of nucleosome components, preparing cell division and chromatin packaging, when cells are not stressed anymore.
Euphorbia lathyris was proposed about fifty years ago as a potential agroenergetic crop. The tremendous amounts of triterpenes present in its latex has driven investigations for transforming this particular biological fluid into an industrial hydrocarbon source. The huge accumulation of terpenes in the latex of many plant species represent a challenging question regarding cellular homeostasis. In fact, the enzymes, the mechanisms and the controllers that tune the amount of products accumulated in specialized compartments (to fulfill ecological roles) or deposited at important sites (as essential factors) are not known. Here, we have isolated oxidosqualene cyclases highly expressed in the latex of Euphorbia lathyris. This triterpene biosynthetic machinery is made of distinct paralogous enzymes responsible for the massive accumulation of steroidal and non-steroidal tetracyclic triterpenes. More than eighty years after the isolation of butyrospermol from shea butter (Heilbronn IM, Moffet GL, and Spring FS J. Chem. Soc. 1934, 1583), a butyrospermol synthase is characterized in this work using yeast and in folia heterologous expression assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.