Summary We analyzed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein arrays. Our ability to integrate information across platforms provided key insights into previously-defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at > 10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the Luminal A subtype. We identified two novel protein expression-defined subgroups, possibly contributed by stromal/microenvironmental elements, and integrated analyses identified specific signaling pathways dominant in each molecular subtype including a HER2/p-HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. Comparison of Basal-like breast tumors with high-grade Serous Ovarian tumors showed many molecular commonalities, suggesting a related etiology and similar therapeutic opportunities. The biologic finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biologic subtypes of breast cancer.
Summary Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas, of a set of predominantly intrahepatic CCA cases, and propose a molecular classification scheme. We identified an IDH-mutant enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH-mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.
Recent prostate-specific antigen-based screening trials indicate an urgent need for novel and noninvasive biomarker identification strategies to improve the prediction of prostate cancer behavior. Noncoding microRNAs (miRNA) in the serum and plasma have been shown to have potential as noninvasive markers for physiologic and pathologic conditions. To identify serum miRNAs that diagnose and correlate with the prognosis of prostate cancer, we developed a multiplex quantitative reverse transcription PCR method involving the purification of multiplex PCR products followed by uniplex analysis on a microfluidics chip to evaluate 384 human miRNAs. Using Dgcr8 and Dicer knockout (small RNA-deficient) mouse ES cells as the benchmark, we confirmed the validity of our technique and uncovered a considerable lack of accuracy in previously published methods. Profiling 48 sera from healthy men and untreated prostate cancer patients with differing CAPRA scores, we identified miRNA signatures that allow us to diagnose cancer patients and correlate with a prognosis. These serum signatures include oncogenic and tumor-suppressive miRNAs, suggesting functional roles in prostate cancer progression. Cancer Res; 71(2); 550-60. Ó2010 AACR.
The "high risk" subgroup of human papillomaviruses (e.g. HPV-16 and HPV-18) infect and induce tumors of mucosal epithelium. These neoplasms, which can progress to malignancy, retain and express the papillomavirus E6 and E7 oncogenes. In vitro, the E6 and E7 proteins associate with the cellular p53 and Rb proteins and interfere with their normal growth-regulatory functions. We report here that primary human keratinocytes transduced with the HPV-16 E6 gene, but not the E7 gene, express significant telomerase activity. However, despite this detectable enzymatic activity, E6-transduced cells continue to shorten their telomeres during in vitro passaging similar to control cells and to cells expressing the E7 and E6؉E7 genes. At late passages, however, E7-transduced cells partially restore telomere length, although they lack detectable telomerase activity, demonstrating that E6-independent, telomerase-independent events mediate this change.
The`high risk' human papillomaviruses are associated with the development of anogenital carcinomas and their E6 and E7 genes possess immortalizing and transforming functions in several in vitro culture systems. Recently the E6 gene has also been shown to enhance the apoptosis of human mammary epithelial cells. To determine the apoptotic activity of these oncogenes in the natural host cell, we infected genital keratinocytes with retroviruses expressing either HPV-16 E6, E7, or both the E6 and E7 (E6/7) genes. Apoptosis was quantitated under normal growth conditions or when induced by tumor necrosis factor a/cycloheximide or sulfur mustard. In contrast to previous ®ndings with mammary epithelial cells, the E6 gene did not signi®cantly augment either spontaneous or induced apoptosis. E6 also did not suppress apoptosis in normal keratinocytes (despite dramatically reducing their p53 levels), suggesting that p53-independent events mediated this eect. In contrast, E7 increased both spontaneous and induced apoptosis as well as the cellular levels of p53 and p21 protein. Interestingly, coexpression of E6 abrogated E7-facilitated apoptosis by tumor necrosis factor a nearly completely, but had only a minor protective eect on sulfur mustard induced apoptosis in these cells, demonstrating at least in part the p53-dependence and -independence of these two apoptotic pathways. Finally, our results indicate that the apoptosis of normal and E7-expressing keratinocytes is dierentially aected by E6 expression and that E7, when unaccompanied by E6, sensitizes keratinocytes to apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.