Low harvesting costs and increasing demand for forest-derived biomass led to an increased use of full-tree (FT) harvesting in steep terrain areas in Austria. Logging residues, as a by-product of FT harvesting, present an easily accessible bioenergy resource, but high portions of fine particles and contaminants like earth particles and stones make them a complex and difficult fuel, as they affect storage capability, conversion efficiency, or emission rates adversely. The present research focuses on the productivity and performance of a star screen, which was used to remove fine and oversize particles from previously chipped, fresh Norway spruce (Picea abies (L.) Karst.) logging residue woodchips. Three screen settings, which differed in terms of different rotation speeds of the fine star elements (1861 rpm, 2239 rpm, 2624 rpm) were analyzed. Time studies of the star screen were carried out to estimate screening productivity and costs. Furthermore, 115 samples were collected from all material streams, which were assessed for particle size distribution, calorific value, ash content, and component and elemental composition. Average productivity was 20.6 tonnes (t) per productive system hour (PSH 15 ), corresponding to screening costs of 9.02 €/t. The results indicated that the screening of chipped logging residues with a star screen influenced material characteristics of the medium fraction, as it decreased the ash content, the incidence of fine particles, and the nutrient content. The different screen settings had a noticeable influence on the quality characteristics of the screening products. An increase of the rotation speed of the fine stars reduced screening costs per unit of screened material in the medium fraction, but also lowered screening quality.
Forest road networks are exposed to damage by traffic, climate, timber harvesting and vegetation. To maintain their functionality, they must be maintained regularly. Periodical maintenance is required when the forest road surface layer is deteriorated and eroded. Well-graded material is required for replacing the forest road surface and often has to be sourced from gravel storage areas, which is costly and requires a large number of truck trips. Therefore, converting non-graded aggregate available on site into well-graded aggregate with a mobile stone crusher is considered a viable alternative.The present study was carried out during a periodical maintenance treatment at the Bavarian State Forest Enterprise and the effect of employing a mobile stone crusher was evaluated with regard to (1) forest road load bearing capacity development during a one-year period post-treatment, (2) particle size distribution of the surface layer material before and after crushing, and (3) its cost compared to other alternatives. Samples were collected pre- and post-operation for particle size distribution analysis, load bearing capacity was measured repeatedly with a light falling weight deflectometer and compared to an untreated reference section and cost of the treatment was compared to two alternatives.The mobile stone crusher was capable of reducing the non-graded to well-graded/close-to-well-graded material and particle size distributions aligned well with the recommendations for lime-water bonded surfaces. Load bearing capacity exceeded the threshold of 40 MN m-2 (Evd, elastic modulus dynamic) for primary forest roads at all times. It increased significantly after the treatment and remained on a significantly higher level throughout the following year. Absolute and relative increases were higher than on the untreated reference section. The treatment variant involving a mobile stone crusher and material available on site was substantially cheaper (5.31 € m-1) than to supply non-graded (16.29 € m-1) or well-graded (19.82 € m-1) material by truck. Material and transport costs represented 67% and 82% of the total costs in the latter two cases. It can be concluded that mobile stone crushers are capable of producing at least close-to-well-graded forest road surface aggregate and that forest road load bearing capacity can be significantly and lastingly increased at only a part of the costs of the alternatives. A maximum of cost and resource efficiency and environmental soundness can be attained when enough surface aggregate is available on site. If this is not the case, sourcing non-graded material as local as possible is the next best alternative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.