Clinical recovery after a lesion of the central nervous system (CNS) can be attributed to mechanisms of functional compensation, neural plasticity, and/or repair. The relative impact of each of these mechanisms after a human spinal cord injury (SCI) has been explored in a prospective European multi-center study in 460 acute traumatic SCI subjects. Functional (activities of daily living and ambulatory capacity), neurological (sensory-motor deficits), and spinal conductivity (motor- and somato-sensory evoked potentials) measures were repeatedly followed over 12 months. In accordance with previous studies, complete SCI subjects (cSCI; n = 217) improved in activities of daily living unrelated to changes of the neurological condition, while incomplete SCI subjects (iSCI; n = 243) showed a greater functional and neurological recovery. The functional recovery in iSCI subjects was not related to an improvement of spinal conductivity, as reflected in unchanged latencies of the evoked potentials. This is in line with animal studies, where spinal conductivity of damaged spinal tracts has been reported to remain unchanged. These findings support the assumption that functional recovery occurs by compensation, especially in cSCI and by neural plasticity leading to a greater improvement in iSCI. Relevant repair of damaged spinal pathways does not take place.
Study design: Review by the spinal cord outcomes partnership endeavor (SCOPE), which is a broadbased international consortium of scientists and clinical researchers representing academic institutions, industry, government agencies, not-for-profit organizations and foundations. Objectives: Assessment of current and evolving tools for evaluating human spinal cord injury (SCI) outcomes for both clinical diagnosis and clinical research studies. Methods: a framework for the appraisal of evidence of metric properties was used to examine outcome tools or tests for accuracy, sensitivity, reliability and validity for human SCI. Results: Imaging, neurological, functional, autonomic, sexual health, bladder/bowel, pain and psychosocial tools were evaluated. Several specific tools for human SCI studies have or are being developed to allow the more accurate determination for a clinically meaningful benefit (improvement in functional outcome or quality of life) being achieved as a result of a therapeutic intervention. Conclusion: Significant progress has been made, but further validation studies are required to identify the most appropriate tools for specific targets in a human SCI study or clinical trial.
BackgroundTask-specific locomotor training has been promoted to improve walking-related outcome after incomplete spinal cord injury (iSCI). However, there is also evidence that lower extremity strength training might lead to such improvements. The aim of this randomized cross-over pilot study was to compare changes in a broad spectrum of walking-related outcome measures and pain between robot-assisted gait training (RAGT) and strength training in patients with chronic iSCI, who depended on walking assistance. We hypothesized that task-specific locomotor training would result in better improvements compared to strength training.MethodsNine participants with a chronic iSCI were randomized to group 1 or 2. Group 1 received 16 sessions of RAGT (45 min each) within 4 weeks followed by 16 sessions of strength training (45 min each) within 4 weeks. Group 2 received the same interventions in reversed order. Main outcome measures were the 10 m Walk Test (10MWT) at preferred and maximal speed. Furthermore, we assessed several measures such as walking speed under different conditions, balance, strength, and 2 questionnaires that evaluate risk of falling and pain. Data were collected at baseline, between interventions after 4 weeks, directly after the interventions and at follow-up 6 months after the interventions. Pain was assessed repeatedly throughout the study.ResultsThere were no significant differences in changes in scores between the 2 interventions, except for maximal walking speed (10MWT), which improved significantly more after strength training than after RAGT. Pain reduced after both interventions.ConclusionIn patients with chronic iSCI dependent on walking assistance, RAGT was not more effective in improving walking-related outcome compared to lower extremity strength training. However, the low sample size limits generalizability and precision of data interpretation.Trial registrationThis study was registered at Clinicaltrials.gov (NCT01087918).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.