The tight gas reserves in the Hangjinqi area are estimated at 700 × 109 m3. Since the exploration of the Hangjinqi, numerous wells are already drilled. However, the Hangjinqi remains an exploration area and has yet to become a gas field. Identifying a paleo-depositional framework such as braided channels is beneficial for exploration and production companies. Further, braided channels pose drilling risks and must be properly identified prior to drilling. Henceforth, based on the significance of paleochannels, this study is focused on addressing the depositional framework and sedimentary facies of the first member (P2x1) of the lower Shihezi formation (LSF) for reservoir quality prediction. Geological modeling, seismic attributes, and petrophysical modeling using cores, logs, interval velocities, and 3D seismic data are employed. Geological modeling is conducted through structural maps, thickness map, and sand-ratio map, which show that the northeastern region is uplifted compared to northwestern and southern regions. The sand-ratio map showed that sand is accumulated in most of the regions within member-1. Interval velocities are incorporated to calibrate the acoustic impedance differences of mudstone and sandstone lithologies, suggesting that amplitude reflection is reliable and amplitude-dependent seismic attributes can be employed. The Root Mean Square (RMS) attribute confirmed the presence of thick-bedded braided channels. The results of cores and logging also confirmed the presence of braided channels and channel-bars. The test results of wells J34 and J72 shows that the reservoir quality within member-1 of LSF is favorable for gas production within the Hangjinqi area.
Heavy metal (HM) pollution in sediments is tightly related to the security of water quality in rivers, but the accumulation and conversion of HMs are poorly researched, so that a field study was conducted as an example in the Liujiang River Basin. Seven HMs were analyzed to determine between the overlying water and sediments. Moreover, the regulation of HMs speciation and environmental factors in their accumulation and conversion were identified. The obtained results suggested the HM concentrations in water are far below the primary standard of water quality, but in sediments, the contents of Cd and Zn are significantly higher than their corresponding baseline of soil. Only Cd and Pb are dominantly in non-residual form (carbonate-bound fraction and reducible fraction, respectively). The non-significant correlations suggested pH and Eh may be hard to influence HMs in water, while the significant correlations highlighted the regulations of Eh, organic matter and mean grain size on the accumulation of metals in sediments. The opposite correlations between EC, TDS, pH and Cd confirmed the emission of acid wastewater contributed to the accumulation of Cd in sediment. The conversion of metals between water and sediments were found to be significant only in specific forms of Cd, As, Cu, Zn and Pb, suggesting the conversion of HMs in sediments should be largely regulated by their specific forms. The very high risk disclosed by the higher values of Eri and RI are only found upstream, while the higher risk of Cd should be treated as a critical environmental threat.
Wild fish caught by anglers were validated to be commonly polluted by metals, but their contamination status could be varied with changing seasons. To determine the seasonal variation in metal pollution and health risks in these fish, this study took Liuzhou City as an example to investigate the concentrations of eight metals in two dominant angling fishes (Cyprinus carpio and Pseudohemiculter dispar) collected, respectively, in winter and summer. The obtained results suggested the mean concentrations of metals in fish are overall lower in winter. Only Cr, Zn, and Cd in some fish were beyond the thresholds in summer. The significant correlations between fish length and weight and most metals suggested the biological dilution effect could exert its influence in winter. The similar distribution of metals in winter suggested that metal bioaccumulation should be manipulated by living habitats, while the inconsistent distribution of metals in summer may be related to the variation in feeding behavior. The metal pollution index (Pi) values were all below 0.2 in winter, which suggested no metal contamination in fish, but most fish were found to be mostly contaminated by Cr and Cd in summer, which was confirmed by their Pi > 0.2. The fish could be consumed freely in winter due to the total target hazard quotient (TTHQ) below 1, while the consumption of fish was not entirely safe in summer, particularly for children, due to TTHQ values that were generally beyond 1. Given the higher weekly recommended consumption of fish in winter, winter should be treated as a suitable season for fish angling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.