This paper developed a quantitative evaluation necessary to ensure ground stability, so a quantitative indicator (bearing capacity). A homogeneous axisymmetric model was generated, considering China’s stress field and the Karst topography characteristics, simultaneously obtaining stress component expression. We then determined the bearing capacity calculation formula by combining the strength theory of shear failure and the stress component expressions. Finally, the comparison of the bearing capacity calculation results between theoretical analysis and a numerical simulation indicated that the error was less than 5%, and the result verified the rationality of the formula.
Adverse buried bodies near to ground surface would damage the buildings, and the detailed geometric characteristics of adverse buried bodies is essential for reducing damage and potential risk. To achieve this goal, forward simulation on geometric characteristics of three typical culverts in Chongqing were carried out in this paper. The response characteristics of (ground penetrating radar) GPR profiles caused by geometric characteristics and filling materials change were summarized, and the apexes of diffraction hyperbolas and lateral changes in the reflection pattern were used to determine the dimension and boundary of buried bodies. The comparison between GPR profiles interpretation result and the measured data in the field was used to verify the validity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.