BackgroundColorectal cancer (CRC) is a heterogeneous disease with different molecular characteristics associated with many variables such as the sites from which the tumors originate or the presence or absence of chromosomal instability. Identification of such variables, particularly mutational hotspots, often carries a significant diagnostic and/or prognostic value that could ultimately affect the therapeutic outcome.MethodsHigh-throughput mutational analysis of 99 CRC formalin-fixed and paraffin-embedded (FFPE) cases was performed using the Cancer Hotspots Panel (CHP) v2 on the Ion Torrent™ platform. Correlation with survival and other Clinicopathological parameters was performed using Fisher’s exact test and Kaplan–Meier curve analysis.ResultsTargeted sequencing lead to the identification of frequent mutations in TP53 (65 %), APC (36 %), KRAS (35 %), PIK3CA (19 %), PTEN (13 %), EGFR (11 %), SMAD4 (11 %), and FBXW7 (7 %). Other genes harbored mutations at lower frequency. EGFR mutations were relatively frequent and significantly associated with young age of onset (p = 0.028). Additionally, EGFR or PIK3CA mutations were a marker for poor disease-specific survival in our cohort (p = 0.009 and p = 0.032, respectively). Interestingly, KRAS or PIK3CA mutations were significantly associated with poor disease-specific survival in cases with wild-type TP53 (p = 0.001 and p = 0.02, respectively).ConclusionsFrequent EGFR mutations in this cohort as well as the differential prognostic potential of KRAS and PIK3CA in the presence or absence of detectable TP53 mutations may serve as novel prognostic tools for CRC in patients from the Kingdom of Saudi Arabia. Such findings could help in the clinical decision-making regarding therapeutic intervention for individual patients and provide better diagnosis or prognosis in this locality.
BackgroundRecurrent pregnancy loss (RPL) or recurrent spontaneous abortion is an obstetric complication that affects couples at reproductive age. Previous reports documented a clear relationship between parents with chromosomal abnormalities and both recurrent miscarriages and infertility. However, limited data is available from the Arabian Peninsula which is known by higher rates of consanguineous marriages. The main goal of this study was to determine the prevalence of chromosomal abnormalities and thrombophilic polymorphisms, and to correlate them with RPL and consanguinity in Saudi Arabia.MethodsCytogenetic analysis of 171 consent patients with RPL was performed by the standard method of 72-h lymphocyte culture and GTG banding. Allelic polymorphisms of three thrombophilic genes (Factor V Leiden, Prothrombin A20210G, MTHFR C677T) were performed using PCR-RFLP (restriction fragment length polymorphism) and gel electrophoresis.ResultsData analysis revealed that 7.6 % of patients were carrier of numerical or structural chromosomal abnormalities. A high rate of translocations (46 %) was associated to increased incidence of RPL. A significant correlation between consanguineous RPL patients and chromosomal abnormalities (P < 0.05) was found. Both Factor V Leiden and Prothrombin A20210G allelic polymorphisms were significantly associated with a higher prevalence of RPL.ConclusionsThis study demonstrated a strong association between RPL and the prevalence of chromosomal abnormalities and inherited thrombophilia. Given the high rate of consanguineous marriages in the Saudi population, these results underline the importance of systematic cytogenetic investigation and genetic counseling preferably at the premarital stage or at least during early pregnancy phase through preimplantation genetic diagnosis (PGD).
BackgroundGlucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) deficiency is caused by one or more mutations in the G6PD gene on chromosome X. An association between enzyme levels and gene haplotypes remains to be established.MethodsIn this study, we determined G6PD enzyme levels and sequenced the coding region, including the intron-exon boundaries, in a group of individuals (163 males and 86 females) who were referred to the clinic with suspected G6PD deficiency. The sequence data were analysed by physical linkage analysis and PHASE haplotype reconstruction.ResultsAll previously reported G6PD missense changes, including the AURES, MEDITERRANEAN, A-, SIBARI, VIANGCHAN and ANANT, were identified in our cohort. The AURES mutation (p.Ile48Thr) was the most common variant in the cohort (30% in males patients) followed by the Mediterranean variant (p.Ser188Phe) detectable in 17.79% in male patients. Variant forms of the A- mutation (p.Val68Met, p.Asn126Asp or a combination of both) were detectable in 15.33% of the male patients. However, unique to this study, several of such mutations co-existed in the same patient as shown by physical linkage in males or PHASE haplotype reconstruction in females. Based on 6 non-synonymous variants of G6PD, 13 different haplotypes (13 in males, 8 in females) were identified. Five of these were previously unreported (Jeddah A, B, C, D and E) and were defined by previously unreported combinations of extant mutations where patients harbouring these haplotypes exhibited severe G6PD deficiency.ConclusionsOur findings will help design a focused population screening approach and provide better management for G6PD deficiency patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.