Donor-specific HLA alloantibodies may cause acute and chronic antibody-mediated rejection (AMR) and significantly compromise allograft survival. The clinical relevance of antibodies directed against some HLA class II antigens, particularly HLA-DP, is less clear with conflicting reports on their pathogenicity. We report two patients with high levels of pretransplant donorspecific HLA-DP antibodies who subsequently developed recurrent acute AMR and graft failure. In both cases, there were no other donor-specific HLA alloantibodies, suggesting that the HLA-DP-specific antibodies may be directly pathogenic.
In the current study, the researchers have been obtained Bayes estimators for the shape and scale parameters of Gamma distribution under the precautionary loss function, assuming the priors, represented by Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation.
Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of Bayes estimator under precautionary loss function with Gamma and Exponential priors is better than other estimates in all cases.
This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
In the current study, we have been derived some Basyian estimators for the parameter and relia-bility function of the inverse Rayleigh distribution under Generalized squared error loss function. In order to get the best understanding of the behavior of Bayesian analysis, we consider non-informative prior for the scale parameter using Jefferys prior Information as well as informative prior density represented by Gamma distribution. Monte-Carlo simulation have been employed to compare the behavior of different estimates for the scale parameter and reliability function of in-verse Rayleigh distribution based on mean squared errors and Integrated mean squared errors, respectively. In the current study, we observed that more occurrence of Bayesian estimate using Generalized squared error loss function using Gamma prior is better than other estimates for all cases
In this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.