The growth in the usage of the web, especially e-commerce website, has led to the development of recommender system (RS) which aims in personalizing the web content for each user and reducing the cognitive load of information on the user. However, as the world enters Big Data era and lives through the contemporary data explosion, the main goal of a RS becomes to provide millions of high quality recommendations in few seconds for the increasing number of users and items. One of the successful techniques of RSs is collaborative filtering (CF) which makes recommendations for users based on what other like-mind users had preferred. Despite its success, CF is facing some challenges posed by Big Data, such as: scalability, sparsity and cold start. As a consequence, new approaches of CF that overcome the existing problems have been studied such as Singular value decomposition (SVD). This paper surveys the literature of RSs and reviews the current state of RSs with the main concerns surrounding them due to Big Data. Furthermore, it investigates thoroughly SVD, one of the promising approaches expected to perform well in tackling Big Data challenges, and provides an implementation to it using some of the successful Big Data tools (i.e. Apache Hadoop and Spark). This implementation is intended to validate the applicability of, existing contributions to the field of, SVD-based RSs as well as validated the effectiveness of Hadoop and spark in developing large-scale systems. The implementation has been evaluated empirically by measuring mean absolute error which gave comparable results with other experiments conducted, previously by other researchers, on a relatively smaller data set and non-distributed environment. This proved the scalability of SVD-based RS and its applicability to Big Data.
The increasing usage of e-commerce website has led to the emergence of Recommender System (RS) with the aim of personalizing the web content for each user. One of the successful techniques of RSs is Collaborative Filtering (CF) which makes recommendations for users based on what other like-mind users had preferred. However, as the world enter Big Data era, CF has faced some challenges such as: scalability, sparsity and cold start. Thus, new approaches that overcome the existing problems have been studied such as Singular Value Decomposition (SVD). This chapter surveys the literature of RSs, reviews the current state of RSs with the main concerns surrounding them due to Big Data, investigates thoroughly SVD and provides an implementation to it using Apache Hadoop and Spark. This is intended to validate the applicability of, existing contributions to the field of, SVD-based RSs as well as validated the effectiveness of Hadoop and spark in developing large-scale systems. The results proved the scalability of SVD-based RS and its applicability to Big Data.
Abstract-These days the common term used for distinguishing the services such as availability, data mobility, cost effective, privacy and security is "Cloud Computing Technology". Cloud computing can solve technical issues, reduce organization cost, and make data available anytime, anywhere. Like many technologies, cloud computing is facing lot of challenges; one of these challenges is "Trust relationship". In this paper we will propose a model called "Cloud Computing Trust Relationship Model (CCTRM)". This model will enhance the security and privacy for cloud computing environment. CCTRM model will be used in telecommunication and nontelecommunication organizations, governments sectors, and private sectors to implement trust relationship between them and cloud computing service providers. This trust will allow the organization to obtain cloud computing services safely without the need to be worry about security and privacy on their cloud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.