DNA sequence classification is one of the major challenges in biological data processing. The identification and classification of novel viral genome sequences drastically help in reducing the dangers of a viral outbreak like COVID-19. The more accurate the classification of these viruses, the faster a vaccine can be produced to counter them. Thus, more accurate methods should be utilized to classify the viral DNA. This research proposes a hybrid deep learning model for efficient viral DNA sequence classification. A genetic algorithm (GA) was utilized for weight optimization with Convolutional Neural Networks (CNN) architecture. Furthermore, Long Short-Term Memory (LSTM) as well as Bidirectional CNN-LSTM model architectures are employed. Encoding methods are needed to transform the DNA into numeric format for the proposed model. Three different encoding methods to represent DNA sequences as input to the proposed model were experimented: k-mer, label encoding, and one hot vector encoding. Furthermore, an efficient oversampling method was applied to overcome the imbalanced dataset issues. The performance of the proposed GA optimized CNN hybrid model using label encoding achieved the highest classification accuracy of 94.88% compared with other encoding methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.