This study introduces, for the first time, a new design methodology that combines the unique multi‐band features of thinned fractal antenna arrays with the adaptive beamforming requirements. The major challenges of fractal array design are the high sidelobe level (SLL), the huge number of elements at higher‐growth stages, and the radiation pattern synthesis. In this study, the ant colony optimisation algorithm is utilised for thinning fractal arrays by estimating the optimum combination of ‘on’ and ‘off’ elements corresponding to lowest possible SLL, while the least mean square algorithm is investigated as an adaptive beamforming method in the proposed design. The capability of the proposed design is demonstrated by investigating hexagonal and pentagonal fractal antenna arrays under various parameter regimes. The results show that the proposed design is much superior in terms of multi‐band frequency operation, array element reduction, and beamforming accuracy. This reveals the effectiveness of the proposed technique as a promising design in smart antenna technology.
This paper proposes, for the first time, a new radiation pattern synthesis for fractal antenna array that combines the unique multi-band characteristics of fractal arrays with the adaptive beamforming requirements in wireless environment with high-jamming power. In this work, a new adaptive beamforming method based on discrete cbKalman filter is proposed for linear Cantor fractal array with high performance and low computational requirements. The proposed Kalman filter-based beamformer is compared with the Least Mean Squares (LMS) and the Recursive Least Squares (RLS) techniques under various parameter regimes, and the results reveal the superior performance of the proposed approach in terms of beamforming stability, Half-Power Beam Width (HPBW), maximum Side-Lobe Level (SLL), null depth at the direction of interference signals, and convergence rate for different Signal to Interference (SIR) values. Also, the results demonstrate that the suggested approach not only achieves perfect adaptation of the radiation pattern synthesis at high jamming power, but also keep the same SLL at different operating frequencies. This shows the usefulness of the proposed approach in multi-band smart antenna technology for mobile communications and other wireless systems.
A modern design of fractal antenna arrays, called fractile array, which exhibits a fractal boundary contour within a tiled plane, is explored for enhanced array performance. In this paper, the Eisenstein fractile array is introduced to exploit the unique geometrical features of fractiles that allow multiband and wideband operation and avoid grating lobes in the radiation pattern even, in some cases, when the array elements' spacing is greater than the half wavelength. To alleviate the large number of elements and the high Side-Lobe Level (SLL) occurred at large scales, the Genetic Algorithm (GA) optimization technique is considered for thinning the proposed antenna array by estimating the optimal set of "on" and "off" elements corresponding to the minimum SLL without degrading the directivity of the radiation pattern. Also, the proposed array configuration is designed with adaptive beamforming capability using the Least Mean Square (LMS) technique. The effectiveness of the proposed GA-LMS approach is investigated by performing several MATLAB simulations under various set of array configurations. Results reveal that the suggested thinned Eisenstein fractile antenna array using GA-LMS approach is superior in terms of multiband and wideband performance, array element reduction, SLL reduction, grating lobe elimination, and beamforming capability. This elucidates the robustness of the suggested thinned Eisenstein fractile array as a promising design for multiband, wideband, compact, inexpensive, and adaptive smart antennas in modern wireless systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.