Social Networks Sites (SNSs) are dominating all internet users' generations, especially the students' communities. Consequently, academic institutions are increasingly using SNSs which leads to emerge a crucial question regarding the impact of SNSs on students' academic performance. This research investigates how and to what degree the use of SNSs affects the students' academic performance. The current research's data was conducted by using drop and collect surveys on a large population from the University of Jordan. 366 undergraduate students answered the survey from different faculties at the university. In order to study the impact of SNSs on student's academic performance, the research hypotheses was tested by using descriptive analysis, T-test and ANOVA. Research results showed that there was a significant impact of SNS on the student's academic performance. Also, there was a significant impact of SNS use per week on the student's academic performance, whereas no differences found in the impact of use of SNSs on academic performance due to age, academic achievement, and use per day to most used sites. The findings of this research can be used to suggest future strategies in enhancing student's awareness in efficient time management and better multitasking that can lead to improving study activities and academic achievements.
Cloud computing aims to maximize the benefit of distributed resources and aggregate them to achieve higher throughput to solve large scale computation problems. In this technology, the customers rent the resources and only pay per use. Job scheduling is one of the biggest issues in cloud computing. Scheduling of users' requests means how to allocate resources to these requests to finish the tasks in minimum time. The main task of job scheduling system is to find the best resources for user's jobs, taking into consideration some statistics and dynamic parameters restrictions of users' jobs. In this research, we introduce cloud computing, genetic algorithm and artificial neural networks, and then review the literature of cloud job scheduling. Many researchers in the literature tried to solve the cloud job scheduling using different techniques. Most of them use artificial intelligence techniques such as genetic algorithm and ant colony to solve the problem of job scheduling and to find the optimal distribution of resources. Unfortunately, there are still some problems in this research area. Therefore, we propose implementing artificial neural networks to optimize the job scheduling results in cloud as it can find new set of classifications not only search within the available set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.