BackgroundSonchus arvesis is traditionally reported in various human ailments including hepatotoxicity in Pakistan. Presently we designed to assess the protective effects of methanolic extract of Sonchus arvesis against carbon tetrachloride induced genotoxicity and DNA oxidative damages in hepatic tissues of experimental rats.Methods36 male Sprague–Dawley rats were randomly divided into 6 groups to evaluate the hepatoprotective effects of Sonchus arvensis against CCl4 induced genotoxicity, DNA damages and antioxidant depletion. Rats of normal control group were given free access of food and water add labitum. Group II rats received 3 ml/kg of CCl4 (30% in olive oil v/v) via the intraperitoneal route twice a week for four weeks. Group III and IV received 1 ml of 100 mg/kg b.w. and 200 mg/kg b.w. SME via gavage after 48 h of CCl4 treatment whereas group V was given 1 ml of silymarin (100 mg/kg b.w.) after 48 h of CCl4 treatment. Group VI only received 200 mg/kg b.w. SME. Protective effects of SME were checked by measuring serum markers, activities of antioxidant enzymes, genotoxicity and DNA dmages.ResultsResults of the present study showed that treatment of SME reversed the activities of serum marker enzymes and cholesterol profile as depleted with CCl4 treatment. Activities of endogenous antioxidant enzymes of liver tissue homogenate; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSHpx), glutathione-S-transferase (GST) and glutathione reductase (GSR) were reduced with administration of CCl4, which were returned to the control level with SME treatment. CCl4-induced hepatic cirrhosis decreased hepatic glutathione (GSH) and increased lipid peroxidative products (TBARS), were normalized by treatment with SME. Moreover, administration of CCl4 caused genotoxicity and DNA fragmentation which were significantly restored towards the normal level with SME.ConclusionThese results reveal that treatment of SME may be useful in the prevention of hepatic stress.
Doxorubicin (DOX), is a highly active anticancer agent, but its clinical use is limited by its severe cardiotoxic side‑effects associated with increased oxidative stress and apoptosis. Resveratrol (RSVL) is a naturally occurring polyphenolic compound (trans-3,5,4'-trihydroxystilbene) found primarily in root extracts of the oriental plant Polygonum cuspidatum and of numerous additional plant species. It has recently been shown that RSVL has a number of beneficial effects in different biological systems, which include anti-oxidant, antineoplastic, anticarcinogenic, cardioprotective and antiviral effects. In this study, we examined whether RSVL has protective effects against DOX‑induced free radical production and cardiotoxicity in male rats. The tested dose of DOX (20 mg/kg) caused a significant increase in the serum activities of the cardiac enzymes lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) and the level of malondialdehyde (MDA) in the heart tissue. However, there was a significant decrease in the glutathione level in the heart tissue. Simultaneous treatment of rats with RSVL [10 mg/kg, intraperitoneal (i.p.) injection] reduced the activity of LDH and CPK and significantly reduced MDA production in the heart. The total antioxidant capacity was increased following RSVL administration. Electron microscopy examination of the heart tissue showed that DOX treatment results in massive fragmentation and lysis of the myofibrils, and that mitochondria show either vacuolization or complete loss of the cristae. Simultaneous treatment with RSVL ameliorated the effect of DOX administration on cardiac tissue, with cardiomyocytes appearing normal compared to the control samples, and mitochondria retaining their normal structure.
BackgroundDoxorubicin (DOX), an anthracycline antibiotic is one of the most effective anticancer drug used in the treatment of variety of cancers .Its use is limited by its cardiotoxicity. The present study was designed to assess the role of a natural product resveratrol (RSVL) on sensitization of mammary carcinoma (Ehrlich ascites carcinoma) to the action of DOX and at the same time its protective effect against DOX-induced cardiotoxicity in rats.MethodsEhrlich ascites carcinoma bearing mice were used in this study. Percent survival of tumor bearing mice was used for determination of the Cytotoxic activity of DOX in presence and absence of RSVL. Uptake and cell cycle effect of DOX in tumor cells in the presence of RSVL was also determined. Histopatholgical examination of heart tissues after DOX and/or RSVL therapy was also investigated.ResultsDOX at a dose level of 15 mg/kg increased the mean survival time of tumor bearing mice to 21 days compared with 15 days for non tumor-bearing control mice. Administration of RSVL at a dose level of 10 mg/kg simultaneously with DOX increased the mean survival time to 30 days with 70% survival of the tumor-bearing animals. RSVL increased the intracellular level of DOX and there was a strong correlation between the high cellular level of DOX and its cytotoxic activity. Moreover, RSVL treatment showed 4.8 fold inhibition in proliferation index of cells treated with DOX. Histopathological analysis of rat heart tissue after a single dose of DOX (20 mg/kg) showed myocytolysis with congestion of blood vessels, cytoplasmic vacuolization and fragmentation. Concomitant treatment with RSVL, fragmentation of the muscle fiber revealed normal muscle fiber.ConclusionThis study suggests that RSVL could increase the cytotoxic activity of DOX and at the same time protect against its cardiotoxicity.
Treatment of diabetic patients with antioxidant, such as extra virgin olive oil (EVOO), may be beneficial in numerous debilitating complexities. This study was aimed at assessing the protective role of virgin olive oil in reducing hyperglycemia in streptozotocin- (STZ-) induced diabetic rats. Thirty-six healthy male Sprague-Dawley rats were divided into six groups (6 rats per group) including nondiabetic control (NC), diabetic control (DC), and animals treated with metformin, olive oil, and a combination of olive oil and metformin, respectively. The protective effect of olive oil was evaluated by determining the biochemical parameters (lipid profile, liver, and kidney) and by studying the histopathological alterations in pancreas, liver, and kidney tissues. The results showed a significant increase in alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels in diabetic rats. ALP levels remained significantly elevated in the diabetic rats that were treated with metformin and/or olive oil, and the highest level was noted in the group treated with olive oil (568.33 U/L). Contrarily, pretreatment with olive oil significantly decreased ALT (67.64 U/L) and ALP (226.17 U/L) levels. Histopathological data revealed that all the disorganized islets of Langerhans along with the clusters of inflammatory cells were absent in the group pretreated with the combination of virgin olive oil and metformin, which shows that prophylactic administration of this combination reduces the diabetic complications in a much better way. Therefore, pretreatment with olive oil with or without metformin is an encouraging approach for diabetes therapy with immense potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.