This study was built on the basis of experimental results from a simple refrigeration system using R134a as a refrigerant. Based on the real dimensions of the system and the experimental results, Ansys fluent software was used to simulate the system to prepare the system to introduce the nanoparticles theoretically. Since the nanoparticle preparation process is expensive, this research presents a simple, easy, and inexpensive method for the preparation process based on, distilled water, ammonia, copper nitrate, and cerium nitrate to synthesize seven types of nanoparticles as a single oxide and as a mixture from two different oxides The results of preparing using X-ray diffraction and scanning electron microscopy confirmed that the particles were spherical in shape, with suitable average diameters ranging between 78.95 nm, 79.9 nm, 44.15 nm and 63.3 nm for copper oxide, cerium oxide, the first mixture, and the second mixture respectively. The theoretical study confirmed that both copper oxide, cerium oxide, and the mixture consisting of both improved the performance of the refrigeration system and reduced energy consumption. Moreover using the numerical equations available in the literature to calculate the thermophysical properties proved an improvement in these properties with an increase in the nanoparticle concentration when mixed with R134a.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.