Accurate forest parameters are essential for forest inventory. Traditionally, parameters such as diameter at breast height (DBH) and total height are measured in the field by level gauges and hypsometers. However, field inventories are usually based on sample plots, which, despite providing valuable and necessary information, are laborious, expensive, and spatially limited. Most of the work developed for remote measurement of DBH has used terrestrial laser scanning (TLS), which has high density point clouds, being an advantage for the accurate forest inventory. However, TLS still has a spatial limitation to application because it needs to be manually carried to reach the area of interest, requires sometimes challenging field access, and often requires a field team. UAV-borne (unmanned aerial vehicle) lidar has great potential to measure DBH as it provides much higher density point cloud data as compared to aircraft-borne systems. Here, we explore the potential of a UAV-lidar system (GatorEye) to measure individual-tree DBH and total height using an automatic approach in an integrated crop-livestock-forest system with seminal forest plantations of Eucalyptus benthamii. A total of 63 trees were georeferenced and had their DBH and total height measured in the field. In the high-density (>1400 points per meter squared) UAV-lidar point cloud, we applied algorithms (usually used for TLS) for individual tree detection and direct measurement of tree height and DBH. The correlation coefficients (r) between the field-observed and UAV lidar-derived measurements were 0.77 and 0.91 for DBH and total tree height, respectively. The corresponding root mean square errors (RMSE) were 11.3% and 7.9%, respectively. UAV-lidar systems have the potential for measuring relatively broad-scale (thousands of hectares) forest plantations, reducing field effort, and providing an important tool to aid decision making for efficient forest management. We recommend that this potential be explored in other tree plantations and forest environments.
Lidar point clouds have been frequently used in forest inventories. The higher point density has provided better representation of trees in forest plantations. So we developed a new approach to fill this gap in the integrated crop-livestock-forest system, the sampling forest inventory, which uses the principles of individual tree detection applied under different plot arrangements. We use a UAV-lidar system (GatorEye) to scan an integrated crop-livestock-forest system with Eucalyptus benthamii seed forest plantations. On the high density UAV-lidar point cloud (>1400 pts. m2), we perform a comparison of two forest inventory approaches: Sampling Forest Inventory (SFI) with circular (1380 m2 and 2300 m2) and linear (15 trees and 25 trees) plots and Individual Tree Detection (ITD). The parametric population values came from the approach with measurements taken in the field, called forest inventory (FI). Basal area and volume estimates were performed considering the field heights and the heights measured in the LiDAR point clouds. We performed a comparison of the variables number of trees, basal area, and volume per hectare. The variables by scenarios were submitted to analysis of variance to verify if the averages are considered different or equivalent. The RMSE (%) were calculated to explain the deviation between the measured volume (filed) and estimated volume (LiDAR) values of these variables. Additionally, we calculated rRMSE, Standard error, AIC, R2, Bias, and residual charts. The basal area values ranged from 7.40 m2 ha−1 (C1380) to 8.14 m2 ha−1 281 (C2300), about −5.9% less than the real value (8.65 m2 ha−1). The C2300 scenario was the only one whose confidence interval (CI) limits included the basal area real. For the total stand volume, the ITD scenario was the one that presented the closer values (689.29 m3) to the real total value (683.88 m3) with the real value positioned in the CI. Our findings indicate that for the stand conditions under study, the SFI approach (C2300) that considers an area of 2300 m2 is adequate to generate estimates at the same level as the ITD approach. Thus, our study should be able to assist in the selection of an optimal plot size to generate estimates with minimized errors and gain in processing time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.