A phase field model for nonlinearly graded ferroelectric thin films is developed based on the Ginzburg–Landau theory. The developed phase field model is validated by comparing simulated results and available experiment data. Via phase field simulations, effects of gradient index on polarization field and electromechanical response are systematically investigated. Anomalously large electromechanical responses are explored in nonlinearly graded ferroelectric thin films made of Ba1−x$_{1-x}$SrxTiO3, where SrTiO3 mole fraction varies across the film thickness according to power‐law relationships. In addition, a large gradient of polarization can be stabilized in graded ferroelectric thin films, where both magnitude and gradient of polarization can be manipulated by controlling the gradient index of thin films. The remarkable enhancement of electromechanical properties originates from the large gradient of polarization in thin films, which makes the polarization field more susceptible to external excitation. An optimal gradient index for maximizing the electromechanical response is also identified. Furthermore, a consideration of energy properties of graded thin films suggests that both energy storage density and charge–discharge efficiency increase with increasing gradient index of thin films.
Large piezoelectric effect in nonlinearly graded lead‐free ferroelectric thin films
In article number 2100370, using extended phase field simulations, Le Van Lich and co‐workers demonstrate that a large piezoelectric effect can be obtained in nonlinearly graded lead‐free ferroelectric thin film. The enhancement of piezoelectric property originates from the large gradient of electrical polarization, which makes the polarization field more susceptible to external excitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.