Rationale: Neutrophilic inflammation is an important pathologic feature of chronic obstructive pulmonary disease (COPD) and infectious exacerbations of COPD. Serum amyloid A (SAA) promotes neutrophilic inflammation by its interaction with lung mucosal ALX/ FPR2 receptors. However, little is known about how this endogenous mediator regulates IL-17A immunity. Objectives: To determine whether SAA causes neutrophilic inflammation by IL-17A-dependent mechanisms. Methods: The relationship between SAA and neutrophils was investigated in lung sections from patients with COPD and a chronic mouse model of SAA exposure. A neutralizing antibody to IL-17A was used to block SAA responses in vivo, and a cell-sorting strategy was used to identify cellular sources. Measurements and Main Results: SAA mRNA expression was positively associated with tissue neutrophils in COPD (P , 0.05). SAA predominately promoted expression of the T H 17 polarizing cytokine IL-6, which was opposed by 15-epi-lipoxin A 4 , a counter-regulatory mediator, and ALX/FPR2 ligand. SAA-induced inflammation was markedly reduced by a neutralizing antibody to IL-17A in vivo. Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and severe asthma, are characterized by an exaggerated inflammatory profile involving accumulation of neutrophils with disease progression (1). Neutrophilic inflammation increases with COPD severity despite escalating use of glucocorticosteroids (2, 3), which contributes to excessive proteinase release and host tissue damage (4). Respiratory infections also trigger acute exacerbations of COPD (AECOPD), where airway neutrophilia increases with severity (5). AECOPDs have a major impact because they lead to impaired health-related quality of life (6) and a more rapid decline in lung function (7). We have previously shown that circulating serum amyloid A (SAA) levels acutely rise during AECOPD, where its levels were predictive of event severity (8). Furthermore, we have demonstrated elevated SAA immunoreactivity in the submucosa of COPD lung sections in close proximity to the basal epithelium and show a positive correlation between secreted SAA and the neutrophil activation marker, neutrophil elastase (9). SAA promotes expression of inflammatory mediators and neutrophil chemotaxis and survival by the ALX-FPR2 receptor in a manner that is opposed by the endogenous proresolving lipid mediator lipoxin A 4 (LXA 4 ) (9-12).SAA is also a potent endogenous ligand that stimulates expression of T H 17 polarizing mediators (13,14), and influences in vitro T H 17 differentiation of CD4 1 T cells (15). IL-17A promotes inflammation by coordinating granulopoiesis and neutrophil mobilization through its regulation of leukocyte growth factors and cytokines. IL-17A is particularly central to lung immunity because innate host defenses to respiratory pathogens are compromised in mice lacking this cytokine or its receptor (IL-17RA), leading to reduced neutrophil recruitment and increased bacterial burden (16,17). An increase in IL-17A 1 im...
Reactive oxygen species (ROS) produced from cigarette smoke cause oxidative lung damage including protein denaturation, lipid peroxidation, and DNA damage. Glutathione peroxidase-1 (gpx-1) is a detoxifying enzyme that may protect lungs from such damage. The aim of this study was to determine whether gpx-1 protects the lung against oxidative stress-induced lung inflammation in vivo. Male wild-type (WT) or gpx-1(-/-) mice were exposed to cigarette smoke generated from nine cigarettes per day for 4 days to induce oxidative stress and lung inflammation. The effect of the gpx mimetic ebselen on cigarette smoke-induced lung inflammation was evaluated when given prophylactically and therapeutically, i.e., during established inflammation. Mice were killed, and the lungs were lavaged with PBS and then harvested for genomic and proteomic analysis. Gpx-1(-/-) mice exposed to cigarette smoke had enhanced BALF neutrophils, macrophages, proteolytic burden, whole lung IL-17A, and MIP1alpha mRNA compared with WT mice. The gpx mimetic ebselen (10 and 100 microM) inhibited cigarette smoke extract-induced oxidation of MH-S cells in vitro and inhibited cigarette smoke-induced increases in BALF macrophages, neutrophils, proteolytic burden, and macrophage and neutrophil chemotactic factor gene expression when administered prophylactically. In addition, ebselen inhibited established BALF inflammation when administered therapeutically. These data show that gpx-1 protects against cigarette smoke-induced lung inflammation, and agents that mimic the actions of gpx-1 may have therapeutic utility in inflammatory lung diseases where cigarette smoke plays a role.
Influenza A virus (IAV) infections are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Oxidative stress is increased in COPD, IAV-induced lung inflammation and AECOPD. Therefore, we investigated whether targeting oxidative stress with the Nox2 oxidase inhibitors and ROS scavengers, apocynin and ebselen could ameliorate lung inflammation in a mouse model of AECOPD. Male BALB/c mice were exposed to cigarette smoke (CS) generated from 9 cigarettes per day for 4 days. On day 5, mice were infected with 1 × 104.5 PFUs of the IAV Mem71 (H3N1). BALF inflammation, viral titers, superoxide production and whole lung cytokine, chemokine and protease mRNA expression were assessed 3 and 7 days post infection. IAV infection resulted in a greater increase in BALF inflammation in mice that had been exposed to CS compared to non-smoking mice. This increase in BALF inflammation in CS-exposed mice caused by IAV infection was associated with elevated gene expression of pro-inflammatory cytokines, chemokines and proteases, compared to CS alone mice. Apocynin and ebselen significantly reduced the exacerbated BALF inflammation and pro-inflammatory cytokine, chemokine and protease expression caused by IAV infection in CS mice. Targeting oxidative stress using apocynin and ebselen reduces IAV-induced lung inflammation in CS-exposed mice and may be therapeutically exploited to alleviate AECOPD.
The present study has identified IL-17A as an alternative target to combat macrophage accumulation in cigarette smoke (CS)-related lung conditions and suggests that alternative innate cellular sources should be considered when developing strategies to combat excessive IL-17A signalling in chronic lung conditions.
Oxidative stress caused by excessive reactive oxygen species production is implicated in influenza A virus-induced lung disease. Glutathione peroxidase (GPx)-1 is an antioxidant enzyme that may protect lungs from such damage. The objective of this study was to determine if GPx-1 protects the lung against influenza A virus-induced lung inflammation in vivo. Male wild-type (WT) or GPx-1(-/-) mice were inoculated with HKx31 (H3N2, 1 × 10(4) plaque-forming units), and bronchoalveolar lavage fluid (BALF)/lung compartments were analyzed on Days 3 and 7 after infection for inflammatory marker expression, histology, and viral titer. WT mice infected with HKx31 had significantly more BALF total cells, macrophages, neutrophils, and lymphocytes at Days 3 and 7 compared with naive WT animals (n = 5-8; P < 0.05). However, infected GPx-1(-/-) mice had significantly more BALF inflammation, which included more total cells, macrophages, and neutrophils, compared with WT mice, and this was abolished by treatment with the GPx mimetic ebselen. BALF inflammation persisted in GPx-1(-/-) mice on Day 10 after infection, and GPx-1(-/-) mice had significantly more influenza-specific CD8(+) T cells in spleen compared with WT mice (n = 3-4; P < 0.05). Infected GPx-1(-/-) mice had greater peribronchial and parenchymal inflammation than WT mice, and viral titer was significantly reduced in GPx-1(-/-) mice at Day 3 (n = 5; P < 0.05). Gene expression analysis revealed that infected GPx-1(-/-) mice had higher whole lung TNF-α, macrophage inflammatory protein (MIP)-1α, MIP-2, KC, and matrix metalloproteinase (MMP)-12 mRNA compared with infected WT mice. GPx-1(-/-) mice had more MIP-2 protein in BALF at Day 3 and more active MMP-9 protease in BALF at Days 3 and 7 than WT mice. These data indicate that GPx-1 reduces influenza A virus-induced lung inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.