We introduce a gross-margin model to evaluate the technoeconomic feasibility of producing different C1 -C2 chemicals such as carbon monoxide, formic acid, methanol, methane, ethanol, and ethylene through the electroreduction of CO2 . Key performance benchmarks including the maximum operating cell potential (Vmax ), minimum operating current density (jmin ), Faradaic efficiency (FE), and catalyst durability (tcatdur ) are derived. The Vmax values obtained for the different chemicals indicate that CO and HCOOH are the most economically viable products. Selectivity requirements suggest that the coproduction of an economically less feasible chemical (CH3 OH, CH4 , C2 H5 OH, C2 H4 ) with a more feasible chemical (CO, HCOOH) can be a strategy to offset the Vmax requirements for individual products. Other performance requirements such as jmin and tcatdur are also derived, and the feasibility of alternative process designs and operating conditions are evaluated.
Cost
competitive electroreduction of CO2 to CO requires
electrochemical systems that exhibit partial current density (j
CO) exceeding 150 mA cm–2 at cell overpotentials (|ηcell|) less than 1 V.
However, achieving such benchmarks remains difficult. Here, we report
the electroreduction of CO2 on a supported gold catalyst
in an alkaline flow electrolyzer with performance levels close to
the economic viability criteria. Onset of CO production occurred at
cell and cathode overpotentials of just −0.25 and −0.02
V, respectively. High j
CO (∼99,
158 mA cm–2) was obtained at low |ηcell| (∼0.70, 0.94 V) and high CO energetic efficiency
(∼63.8, 49.4%). The performance was stable for at least 8 h.
Additionally, the onset cathode potentials, kinetic isotope effect,
and Tafel slopes indicate the low overpotential production of CO in
alkaline media to be the result of a pH-independent rate-determining
step (i.e., electron transfer) in contrast to a pH-dependent overall
process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.