The non-canonical caspase-4 and canonical NLRP3 inflammasomes are both activated by intracellular lipopolysaccharide (LPS), but the crosstalk between these two pathways remains unclear. Shiga toxin 2 (Stx2)/LPS complex, from pathogenic enterohemorrhagic Escherichia coli, activates caspase-4, gasdermin D (GSDMD), and the NLRP3 inflammasome in human THP-1 macrophages, but not mouse macrophages that lack the Stx receptor CD77. Stx2/LPSmediated IL-1b secretion and pyroptosis are dependent on mitochondrial reactive oxygen species (ROS) downstream of the non-canonical caspase-4 inflammasome and cleaved GSDMD, which is enriched at the mitochondria. Blockade of caspase-4 activation and ROS generation as well as GSDMD deficiency significantly reduces Stx2/LPS-induced IL-1b production and pyroptosis. The NLRP3 inflammasome plays a significant role in amplifying Stx2/LPSinduced GSDMD cleavage and pyroptosis, with significant reduction of these responses in NLRP3deficient THP-1 cells. Together, these data show that Stx2/LPS complex activates the non-canonical inflammasome and mitochondrial ROS upstream of the NLRP3 inflammasome to promote cytokine maturation and pyroptosis.
WCGNA reveals a gene module linked to lymphatic invasion in colon adenocarcinoma
DAPK3 is a pseudohub gene with differential expression in colon cancerGene ontology identified relationships to cytoskeletal organization and apoptosis DAPK3 was correlated with lymphatic invasion and poor overall survival
The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation
Background
Ulcerative colitis (UC) is a progressive disorder that elevates the risk of colon cancer development through a colitis-dysplasia-carcinoma sequence. Gene expression profiling of colitis-associated lesions obtained from patients with varied extents of UC can be mined to define molecular panels associated with colon cancer development.
Methods
Differential gene expression profiles of 3 UC clinical subtypes and healthy controls were developed for the GSE47908 microarray data set of healthy controls, left-sided colitis, pancolitis, and colitis-associated dysplasia (CAD) using limma R.
Results
A gene ontology enrichment analysis of differentially expressed genes (DEGs) revealed a shift in the transcriptome landscape as UC progressed from left-sided colitis to pancolitis to CAD, from being immune-centric to being cytoskeleton-dependent. Hippo signaling (via Yes-associated protein [YAP]) and Ephrin receptor signaling were the top canonical pathways progressively altered in concert with the pathogenic progression of UC. A molecular interaction network analysis of DEGs in left-sided colitis, pancolitis, and CAD revealed 1 pairwise line, or edge, that was topologically important to the network structure. This edge was found to be highly enriched in actin-based processes, and death-associated protein kinase 3 (DAPK3) was a critical member and sole protein kinase member of this network. Death-associated protein kinase 3 is a regulator of actin-cytoskeleton reorganization that controls proliferation and apoptosis. Differential correlation analyses revealed a negative correlation for DAPK3-YAP in healthy controls that flipped to positive in left-sided colitis. With UC progression to CAD, the DAPK3-YAP correlation grew progressively more positive.
Conclusion
In summary, DAPK3 was identified as a candidate gene involved in UC progression to dysplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.