Molybdenum disulfide (MoS(2)) of single- and few-layer thickness was exfoliated on SiO(2)/Si substrate and characterized by Raman spectroscopy. The number of S-Mo-S layers of the samples was independently determined by contact-mode atomic force microscopy. Two Raman modes, E(1)(2g) and A(1g), exhibited sensitive thickness dependence, with the frequency of the former decreasing and that of the latter increasing with thickness. The results provide a convenient and reliable means for determining layer thickness with atomic-level precision. The opposite direction of the frequency shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to Coulombic interactions and possible stacking-induced changes of the intralayer bonding. This work exemplifies the evolution of structural parameters in layered materials in changing from the three-dimensional to the two-dimensional regime.
The collective oscillation of carriers--the plasmon--in graphene has many desirable properties, including tunability and low loss. However, in single-layer graphene, the dependence on carrier concentration of both the plasmonic resonance frequency and magnitude is relatively weak, limiting its applications in photonics. Here, we demonstrate transparent photonic devices based on graphene/insulator stacks, which are formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, then patterning them together into photonic-crystal-like structures. We show experimentally that the plasmon in such stacks is unambiguously non-classical. Compared with doping in single-layer graphene, distributing carriers into multiple graphene layers effectively enhances the plasmonic resonance frequency and magnitude, which is different from the effect in a conventional semiconductor superlattice and is a direct consequence of the unique carrier density scaling law of the plasmonic resonance of Dirac fermions. Using patterned graphene/insulator stacks, we demonstrate widely tunable far-infrared notch filters with 8.2 dB rejection ratios and terahertz linear polarizers with 9.5 dB extinction ratios. An unpatterned stack consisting of five graphene layers shields 97.5% of electromagnetic radiation at frequencies below 1.2 THz. This work could lead to the development of transparent mid- and far-infrared photonic devices such as detectors, modulators and three-dimensional metamaterial systems.
We present a systematic study of the Raman spectra of optical phonons in graphene monolayers under tunable uniaxial tensile stress. Both the G and 2D bands exhibit significant red shifts. The G band splits into 2 distinct subbands (G ؉ , G ؊ ) because of the strain-induced symmetry breaking. Raman scattering from the G ؉ and G ؊ bands shows a distinctive polarization dependence that reflects the angle between the axis of the stress and the underlying graphene crystal axes. Polarized Raman spectroscopy therefore constitutes a purely optical method for the determination of the crystallographic orientation of graphene.S ince the discovery of mechanical cleavage of graphene from graphite crystals (1), graphene has attracted intense interest because of properties that include high electron mobility (2, 3), novel quantum Hall physics (4, 5), superior thermal conductivity (6), and unusually high mechanical strength (7). Raman spectroscopy has emerged as a key diagnostic tool to identify single-layer graphene sheets (8) and probe their physical properties (9, 10). Because strain induces shifts in the vibrational frequencies, Raman spectroscopy can be applied to map built-in strain fields during synthesis (11) and device fabrication, as well as measure load transfer in composites. The rate of shift of the phonon frequencies with strain depends on the anharmonicity of the interatomic potentials of the atoms in the honeycomb lattice and thus can be used to verify theoretical models.Measurement of the strain dependence of the Raman active phonons is thus important for both applied and fundamental studies of this material system (12). By using graphene supported on a flexible substrate, we have been able to obtain precise information on the rate of frequency shift of the Raman G (zone-center optical) and 2D (two-phonon zone-edge optical) modes with strain. In addition, the polarization dependence of the Raman response in strained graphene can, as we demonstrate in this article, be used for an accurate determination of the crystallographic orientation. For unstrained graphene, such an orientation analysis is precluded by the high symmetry of the hexagonal lattice. A particularly important application of this capability lies in the study of nanopatterned graphene monolayers, such as nanoribbons (13) and quantum dots (14). Graphene nanoribbons possess electronic band gaps whose magnitude ref lects both the ribbon width and crystallographic orientation (13,(15)(16)(17). The electronic states associated with graphene edges are also sensitive to the crystallographic orientation of the ribbon (18). It is thus crucial to be able to correlate the measured properties to the underlying crystallographic orientation of the sample. As we show here, polarized Raman spectroscopy provides a simple, but precise analytic tool that complements electron-spectroscopy techniques such as scanning tunneling microscopy (STM) (19), transmission electron microscopy (TEM) (20), and low-energy electron diffraction (LEED) (21), methods that typically requ...
Wrinkling is a ubiquitous phenomenon in two-dimensional membranes. In particular, in the large-scale growth of graphene on metallic substrates, high densities of wrinkles are commonly observed. Despite their prevalence and potential impact on large-scale graphene electronics, relatively little is known about their structural morphology and electronic properties. Surveying the graphene landscape using atomic force microscopy, we found that wrinkles reach a certain maximum height before folding over. Calculations of the energetics explain the morphological transition and indicate that the tall ripples are collapsed into narrow standing wrinkles by van der Waals forces, analogous to large-diameter nanotubes. Quantum transport calculations show that conductance through these "collapsed wrinkle" structures is limited mainly by a density-of-states bottleneck and by interlayer tunneling across the collapsed bilayer region. Also through systematic measurements across large numbers of devices with wide "folded wrinkles", we find a distinct anisotropy in their electrical resistivity, consistent with our transport simulations. These results highlight the coupling between morphology and electronic properties, which has important practical implications for large-scale high-speed graphene electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.