Abstract:In this paper we challenge the notion that "green" buildings can achieve greater productivity than buildings that are not accredited as "green". For nearly two decades, research has produced apparent evidence which indicates that the design of a "green" building can enhance the productivity of its occupants. This relationship between building design and productivity is claimed to be achieved through compliance with internal environmental quality (IEQ) criteria of Green rating tools. This paper reviews methods of measuring productivity and the appropriateness of the metrics used for measuring IEQ in office environments. This review is supported by the results of a survey of office building users which identifies social factors to be significantly more important than environmental factors in trying to correlate productivity and IEQ. It also presents the findings of observations that were discretely carried out on user-response in green buildings. These findings demonstrate that, despite a building's compliance with IEQ criteria, occupants still resort to exceptional measures to alter their working environment in a bid to achieve comfort. The work has been carried out on "green" buildings in New Zealand. These buildings are rated based on the NZ "Green Star" system which has adopted the Australian "green star" system with its roots in BREEAM. Despite this, the results of this research are applicable to many other "green" rating systems. The paper concludes that methods of measuring productivity are flawed, that IEQ criteria for building design is unrepresentative of how occupants perceive the environment and that this can lead to an architecture that has few of the inherent characteristics of good environmental design.
Abstract:In this paper, we investigated the reason(s) why natural ventilation is not as popular as air-conditioned or mixed-mode ventilation systems in Green-rated office buildings in New Zealand. To achieve this, we had three objectives. Firstly, we reviewed the Green Star criteria for thermal comfort in office buildings to ascertain which ventilation system the NZ Green Star rating tool promotes. Secondly, we ascertained the perception of occupants in office buildings regarding thermal comfort. This was followed by an interview with building experts regarding factors that affect the use of natural ventilation in New Zealand offices. The findings showed that the NZ Green Star thermal comfort criteria encourage the use of mechanical ventilation over natural ventilation which results in designers opting for air conditioning systems in office designs. We observed that occupants of naturally ventilated spaces were least satisfied with the thermal comfort of their offices when compared with occupants of mixed-mode and air-conditioned offices. This study fulfils the need to encourage the use of natural ventilation in office environments by designers and building owners. Further study on other aspects of the indoor environment quality that is related to naturally ventilated systems such as lighting and noise is required in a bid to ascertain its viability in office environments.
The paper introduces a novel indicator of urban built form termed Form Signature. Generic models of four urban built forms are developed, including pavilion, terrace, court and a newly introduced tunnel-court is used to compare and contrast their land-use performance and density characteristics. Selecting plot ratio and site coverage as the most popular and appropriate density indicators, the simultaneous relationship to each of the considered urban built forms is shown graphically with the number of storeys, plan depth and cutoff angle as the main variables of interest. For existing urban areas, the resulting graphs provide a robust tool for statistical analysis of contexts such as climate, economy, energy and crime potential and establish their relationship to form and density. To show the value of the contribution, analysing 32 case studies from 19 cities in different global locations showed an insignificant relationship between climate and form/density of urban areas, whilst practically depicting that urban areas built in court form acquire higher cutoff angle compared to terrace form urban developments. For planning the future urban areas, the resulting relationships provide application-oriented urban planning tool to facilitate the most effective land-use method in order to achieve sustainable cities. Examples showing the potential of the tool for future statistical energy and social analysis of urban areas are provided. Finally, a relative comparison shows that the newly-introduced tunnel-court form achieves the greatest density while pavilion achieves the lowest.
This article presents the findings of research carried out on user response, from external evidence, in highly glazed office\ud buildings and analyses the impact of this on predicting the environmental performance, productivity and energy consumption\ud of office buildings.With high proportions of glazing, there is a significant difference between the theory and actual performance\ud of a building envelope, in particular because of user preferences. Excessive glazing increases the probability of blinds being\ud operated to reduce the impact of glare or direct sunlight. This significantly reduces the amount of daylight while only\ud marginally reducing excessive heat gains. In the case of buildings in this research, it was found that blinds were extensively\ud used and that artificial lighting was also used to supplement the loss of daylight, even on bright days. The additional energy\ud used for both cooling and artificial lighting results in high proportions of glazing being responsible for significantly greater\ud energy consumption than predicted and a potential loss in productivity
This research investigates the maximum potential energy that can be made available by efficiently installing PV systems on buildings throughout a city, from the central business district (CBD) out to low density suburbs. The purpose of this is to evaluate the contribution that electricity from PVs can make to reduce the electricity load of a city, supply the needs of a mixture of building types, reduce peak electricity demand and contribute towards the charging of electric vehicles (EVs).A sample of the main urban building types have been taken and reassembled into a representative typical cross-section of a city. The application of PVs for all the building types is investigated and then the potential electricity distribution is evaluated for different urban densities and dispersion patterns. This research is concerned not only with how individual buildings may gain from distributed generation (DG) but, more importantly, how a city as a whole may benefit.The results indicate that low dense suburbia is not only the most efficient collector of solar energy but that enough excess electricity can be generated to power daily transport needs of suburbia and also contribute to peak daytime electrical loads in the city centre. This challenges conventional thinking that suburbia is energy inefficient. While a compact city may be more efficient for the internal combustion engine vehicles, a dispersed city is more efficient when DG solar power is the main energy source and EVs are the means of transport. INTRODUCTIONCities utilise solar energy through passive means of heating and lighting buildings and active means by heating water. A further means, and one of significant growth (IEA, 2010), has been the use of photovoltaics (PVs) to produce electricity by distributed generation (DG). DG has all the advantages of renewable energy systems, such as reduced carbon emissions, offsetting dependence on the electricity grid and long-term energy security. However, it also has the potential advantages within a city of reducing peak electric demand, contributing to transport energy (electric vehicles) and reducing transmission inefficiencies, where grid electricity generation is remote from a city.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.