Phytoplankton face environmental nutrient variations that occur in the dynamic upper layers of the ocean. Phytoplankton cells are able to rapidly acclimate to nutrient fluctuations by adjusting their nutrient uptake system and metabolism. Disentangling these acclimation responses is a critical step in bridging the gap between phytoplankton cellular physiology and community ecology. Here, we analyzed the dynamics of phosphate (P) uptake acclimation responses along different P temporal gradients by using batch cultures of the diatom Phaeodactylum tricornutum. We employed a multidisciplinary approach that combined nutrient uptake bioassays, transcriptomic analysis, and mathematical models. Our results indicated that cells increase their maximum nutrient uptake rate (Vmax) both in response to P pulses and strong phosphorus limitation. The upregulation of three genes coding for different P transporters in cells experiencing low intracellular phosphorus levels supported some of the observed Vmax variations. In addition, our mathematical model reproduced the empirical Vmax patterns by including two types of P transporters upregulated at medium-high environmental and low intracellular phosphorus levels, respectively. Our results highlight the existence of a sequence of acclimation stages along the phosphate continuum that can be understood as a succession of acclimation responses. We provide a novel conceptual framework that can contribute to integrating and understanding the dynamics and wide diversity of acclimation responses developed by phytoplankton.
Abstract. The terrestrial-aquatic interface is a crucial environment in which to consider the fate of exported terrestrial carbon in the aquatic system. Here the fate of dissolved organic carbon (DOC) may be controlled by nutrient availability. However, peat-dominated headwater catchments are normally of low nutrient status and thus there is little data on how DOC and nutrient export co-varies. We present nutrient and DOC data for two UK catchments dominated by peat headwaters. One, Whitelee, is undergoing development for Europe's largest windfarm. Glen Dye by comparison is relatively undisturbed. At both sites there are significant linear relationships between DOC and soluble reactive phosphorus and nitrate concentrations in the drainage waters. However, inter-catchment differences exist. Changes in the pattern of nutrient and carbon export at Whitelee reveal that landscape disturbance associated with windfarm development impacts the receiving waters, and that nutrient export does not increase in a stoichiometric manner that will promote increase in microbial biomass but rather supports aquatic respiration. In turn greater CO 2 efflux may prevail. Hence disturbance of terrestrial carbon stores may impact the both the aquatic and gaseous carbon cycle. We suggest estimates of aquatic carbon export should inform the decision-making process prior to development in ecosystems and catchments with high terrestrial carbon storage.
Assessing whether land use, from activities such as wind farm construction and tree-felling, impacts on terrestrial C delivery to rivers has focused on quantifying the loss of dissolved organic carbon (DOC), and not the composition changes. Here we explore how land use influences DOC composition by considering fluvial DOC concentration, [DOC], and spectrophotometric composition of a river draining a peat-rich catchment. We find that in this 5.7km catchment differences occur in both the concentration and composition of the DOC in its sub-catchments. This is attributed to differences in how land was used: one tributary (D-WF) drains an area with wind farm construction and forestry in the headwaters, and one tributary (D-FF) drains an area with felled plantation trees. Generally, [DOC] in both streams showed similar seasonal variation, and autumn maxima. However, the felled catchment had greater mean [DOC] than the wind farm catchment. The SUVA and E/E indicated DOC in both streams had similar aromaticity and fulvic:humic acid for most of the time, but SUVA and E/E indicated less DOC humification in the felled catchment. This may be due to young DOC from the breakdown of residual branches and roots, or more humification in soils in the wind farm area. During the dry months, DOC composition showed more spatial variation: the D-WF DOC had smaller SUVA (less total aromatic material) and SUVA (fewer humic substances). The decreased E/E in both streams indicated the total aromatic carbon decreased more than humic substances content. Moreover, the larger E/E for D-WF in summer indicated that the humic substances were richer in fulvic acids than humic acids. Soil disturbance associated with forestry-felling likely contributed to the higher [DOC] and release of less-humified material in D-FF. This research indicates drivers of different DOC concentration and composition can exist even in small catchments.
Abstract. The terrestrial-aquatic interface is a crucial environment in which to consider the fate of exported terrestrial carbon in the aquatic system. To a large extent the fate of dissolved organic carbon (DOC) may be controlled by nutrient availability. However, peat-dominated headwater catchments are normally considered of low nutrient status and thus there is little data on the interaction of DOC and nutrients. Here we present nutrient and DOC data exported from two UK catchments, both dominated by peat headwaters, but of differing land-use. Glen Dye is a moorland with no trees; Whitelee has partially forested peats and peaty podzols, and is now undergoing development to host Europe's largest on-shore windfarm, the Whitelee Windfarm. There are significant linear relationships between DOC and soluble reactive phosphorus and nitrate concentrations in the drainage waters, but inter-catchment differences exist. Changes in the pattern of nutrient and carbon export in Whitelee suggest that disturbance of peatlands soils can impact the receiving water and that nutrient export does not increase in a stoichiometric manner that will promote increase in biomass. As such the changes are more likely to cause increased aquatic respiration, and thus lead to higher dissolved CO2 concentrations (and therefore CO2 efflux). Hence disturbance of terrestrial carbon stores may also impact the gaseous carbon cycle. Confirming the source of carbon and nutrients in these study sites is not possible. However, nearby 14C measurements are in keeping with other published literature values from similar sites which show C in DOM exported from peatlands is predominantly modern, and thus supports an interpretation that nutrients, additional to carbon, are derived from shallow soils. Estimates of organic carbon loss from Whitelee catchments to the drainage waters suggest a system where losses are approaching likely sequestration rates. We suggest such sequestration assessment should inform the decision-making tools required prior to development of terrestrial carbon stores.
Wind farms can help to mitigate increasing atmospheric carbon (C) emissions. However, disturbance caused by wind farm development must not have lasting deleterious impacts on landscape C sequestration. To understand the effects of wind farm development on peatlands, we monitored streamwater at Europe's second largest onshore wind farm (539 MW), Whitelee, Scotland, for 31 months. Using nested catchment sampling to understand impacts on water quality, increasing macronutrient concentrations and exports were associated with wind farm development, particularly forest-felling and borrow pits. Low/poor water quality occurred in small headwater catchments most disturbed by development. At the site exit, dissolved organic C and soluble reactive phosphorus (SRP) concentrations increased during construction, though [SRP] recovery occurred within 2 years. Since C was lost and streamwater quality negatively affected, we propose future good practice measures for wind farm development, including limiting total disturbance within individual catchments and locating borrow pits, where deemed necessary, off site avoiding peatlands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.