Immunocytochemical staining based on a peroxidase-antiperoxidase method showed neurosecretory cells (NSC) reactive to bovine insulin in five of 18 paraldehyde fuchsin-positive neurosecretory regions (NSR) in the synganglion of unfed adult Dermacentor variabilis. This is the first report of a neuropeptide in an ixodid tick. The insulin-specific immunoreactive cells included the posterior medial group of the protocerebral center, posterior group of dorsal opisthosomal center, anterior lateral group of the dorso-lateral cheliceral center, dorsal group of the frontal stomodeal center, and anterior group of the ventral palpal center. After feeding and mating, females no longer had immunoreactive cells in three of five NSR found in virgin, unfed females. However, two cells of the posterior group in dorsal opisthosomal center and anterior lateral group of the dorso-lateral cheliceral center remained immunoreactive throughout feeding. Fed, mated males continued to display immunoreactive cells in four of five NSR found in the virgin, unfed males. All developmental stages of nymphs examined had insulin-specific immunoreactive cells in two of the five NSR found in unfed adults, including two positively stained cells of the posterior group in dorsal opisthosomal center and anterior group of ventral palpal neurosecretory center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.