The neuropeptides pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are implicated in the photic entrainment of circadian rhythms in the suprachiasmatic nuclei (SCN). We now report that mice carrying a null mutation of the VPAC(2) receptor for VIP and PACAP (Vipr2(-/-)) are incapable of sustaining normal circadian rhythms of rest/activity behavior. These mice also fail to exhibit circadian expression of the core clock genes mPer1, mPer2, and mCry1 and the clock-controlled gene arginine vasopressin (AVP) in the SCN. Moreover, the mutants fail to show acute induction of mPer1 and mPer2 by nocturnal illumination. This study highlights the role of intercellular neuropeptidergic signaling in maintenance of circadian function within the SCN.
Cognitive deficits in schizophrenia are among the core symptoms of the disease, correlate with functional outcome, and are not well treated with current antipsychotic therapies. In order to bring together academic, industrial, and governmental bodies to address this great ‘unmet therapeutic need’, the NIMH sponsored the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative. Through careful factor analysis and consensus of expert opinion, MATRICS identified seven domains of cognition that are deficient in schizophrenia (attention/vigilance, working memory, reasoning and problem solving, processing speed, visual learning and memory, verbal learning and memory, and social cognition) and recommended a specific neuropsychological test battery to probe these domains. In order to move the field forward and outline an approach for translational research, there is a need for a “preclinical MATRICS” to develop a rodent test battery that is appropriate for drug development. In this review, we outline such an approach and review current rodent tasks that target these seven domains of cognition. The rodent tasks are discussed in terms of their validity for probing each cognitive domain as well as a brief overview of the pharmacology and manipulations relevant to schizophrenia for each task.
BackgroundAttentional dysfunction is related to functional disability in patients with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and Alzheimer's disease. Indeed, sustained attention/vigilance is among the leading targets for new medications designed to improve cognition in schizophrenia. Although vigilance is assessed frequently using the continuous performance test (CPT) in humans, few tests specifically assess vigilance in rodents.MethodsWe describe the 5-choice CPT (5C-CPT), an elaboration of the 5-choice serial reaction (5CSR) task that includes non-signal trials, thus mimicking task parameters of human CPTs that use signal and non-signal events to assess vigilance. The performances of C57BL/6J and DBA/2J mice were assessed in the 5C-CPT to determine whether this task could differentiate between strains. C57BL/6J mice were also trained in the 5CSR task and a simple reaction-time (RT) task involving only one choice (1CRT task). We hypothesized that: 1) C57BL/6J performance would be superior to DBA/2J mice in the 5C-CPT as measured by the sensitivity index measure from signal detection theory; 2) a vigilance decrement would be observed in both strains; and 3) RTs would increase across tasks with increased attentional load (1CRT task<5CSR task<5C-CPT).ConclusionsC57BL/6J mice exhibited superior SI levels compared to DBA/2J mice, but with no difference in accuracy. A vigilance decrement was observed in both strains, which was more pronounced in DBA/2J mice and unaffected by response bias. Finally, we observed increased RTs with increased attentional load, such that 1CRT task<5CSR task<5C-CPT, consistent with human performance in simple RT, choice RT, and CPT tasks. Thus we have demonstrated construct validity for the 5C-CPT as a measure of vigilance that is analogous to human CPT studies.
In humans, nicotine has been shown to improve attention in both normal and impaired individuals. Observations in rats reflect some, but not all aspects of the nicotine-induced improvements in humans. To date these findings have not been replicated in mice. To examine the effect of nicotine on sustained attention in mice, we have established a version of the 5-choice serial reaction-time (5-CSR) task with graded levels of difficulty, based upon spatial displacement and a variable intertrial interval. Using this paradigm, microgram doses of nicotine produced a consistent reduction in the level of omissions and an improvement in proportion correct in normal mice. This improvement in sustained attention was made irrespectively of whether mice had previously received nicotine. In an attempt to elucidate which nicotinic acetylcholine receptor (nAChR) subtype(s) mediate this effect, we examined the performance of a7 nAChR knockout (KO) mice in the 5-CSR task. a7 nAChR KO mice not only acquired the task more slowly than their wild-type littermates, but on attaining asymptotic performance, they exhibited a higher level of omissions. In conclusion, by increasing the level of task difficulty, the performance of mice was maintained at sufficiently low levels to allow a demonstrable improvement in performance upon nicotine administration. Furthermore, as a7 KO mice are clearly impaired in the acquisition and asymptotic performance of this task, the a7 nAChR may be involved in mediating these effects of nicotine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.