We present new, fundamentally combinatorial and topological characterizations of the amplituhedron. Upon projecting external data through the amplituhedron, the resulting configuration of points has a specified (and maximal) generalized "winding number". Equivalently, the amplituhedron can be fully described in binary: canonical projections of the geometry down to one dimension have a specified (and maximal) number of "sign flips" of the projected data. The locality and unitarity of scattering amplitudes are easily derived as elementary consequences of this binary code. Minimal winding defines a natural "dual" of the amplituhedron. This picture gives us an avatar of the amplituhedron purely in the configuration space of points in vector space (momentum-twistor space in the physics), a new interpretation of the canonical amplituhedron form, and a direct bosonic understanding of the scattering super-amplitude in planar N = 4 SYM as a differential form on the space of physical kinematical data.
Given a finite Coxeter system (W, S) and a Coxeter element c, or equivalently an orientation of the Coxeter graph of W , we construct a simple polytope whose outer normal fan is N. Reading's Cambrian fan Fc, settling a conjecture of Reading that this is possible. We call this polytope the cgeneralized associahedron. Our approach generalizes Loday's realization of the associahedron (a type A c-generalized associahedron whose outer normal fan is not the cluster fan but a coarsening of the Coxeter fan arising from the Tamari lattice) to any finite Coxeter group. A crucial role in the construction is played by the c-singleton cones, the cones in the c-Cambrian fan which consist of a single maximal cone from the Coxeter fan.Moreover, if W is a Weyl group and the vertices of the permutahedron are chosen in a lattice associated to W , then we show that our realizations have integer coordinates in this lattice.
We situate the noncrossing partitions associated with a finite Coxeter group within the context of the representation theory of quivers. We describe Reading's bijection between noncrossing partitions and clusters in this context, and show that it extends to the extended Dynkin case. Our setup also yields a new proof that the noncrossing partitions associated with a finite Coxeter group form a lattice. We also prove some new results within the theory of quiver representations. We show that the finitely generated, exact abelian, and extension-closed subcategories of the representations of a quiver Q without oriented cycles are in natural bijection with the cluster tilting objects in the associated cluster category. We also show that these subcategories are exactly the finitely generated categories that can be obtained as the semistable objects with respect to some stability condition.
Abstract. In 2007, D.I. Panyushev defined a remarkable map on the set of nonnesting partitions (antichains in the root poset of a finite Weyl group). In this paper we identify Panyushev's map with the Kreweras complement on the set of noncrossing partitions, and hence construct the first uniform bijection between nonnesting and noncrossing partitions. Unfortunately, the proof that our construction is well-defined is case-by-case, using a computer in the exceptional types. Fortunately, the proof involves new and interesting combinatorics in the classical types. As consequences, we prove several conjectural properties of the Panyushev map, and we prove two cyclic sieving phenomena conjectured by D. Bessis and V. Reiner.
Abstract. Higher Auslander algebras were introduced by Iyama generalizing classical concepts from representation theory of finite dimensional algebras. Recently these higher analogues of classical representation theory have been increasingly studied. Cyclic polytopes are classical objects of study in convex geometry. In particular, their triangulations have been studied with a view towards generalizing the rich combinatorial structure of triangulations of polygons. In this paper, we demonstrate a connection between these two seemingly unrelated subjects.We study triangulations of even-dimensional cyclic polytopes and tilting modules for higher Auslander algebras of linearly oriented type A which are summands of the cluster tilting module. We show that such tilting modules correspond bijectively to triangulations. Moreover mutations of tilting modules correspond to bistellar flips of triangulations.For any d-representation finite algebra we introduce a certain d-dimensional cluster category and study its cluster tilting objects. For higher Auslander algebras of linearly oriented type A we obtain a similar correspondence between cluster tilting objects and triangulations of a certain cyclic polytope.Finally we study certain functions on generalized laminations in cyclic polytopes, and show that they satisfy analogues of tropical cluster exchange relations. Moreover we observe that the terms of these exchange relations are closely related to the terms occuring in the mutation of cluster tilting objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.