The hot‐face refractory lining is a key component of gasification systems. The refractory liner protects the gasification system from the high‐temperature corrosive gaseous and from the molten slag environment associated with the conversion of carbon feedstocks. This paper will discuss the effect of gasifier operating conditions and carbon feedstock slag/ash chemistry on the refractory service life. Particular attention is focused on the wear mechanism of chromia refractories, determined through postmortem analysis of spent refractory bricks from service in gasifiers. Also presented is the behavior of a phosphate‐containing chromia refractory with improved resistance to structural spalling.
The infiltration characteristics of synthetic coal slag into Al2s3 refractory material with a temperature gradient induced along the slag's penetration direction were investigated with respect to time and oxygen partial pressure of the experimental atmosphere. Synthetic slag, which is representative of an average of the ash contents from United States coal feedstock, was melted in either an oxidizing air atmosphere or a reducing CO/CO2 gas mixture with a ratio of 1.8. The experiments were conducted with a hot‐face temperature of 1450°C, and the slags were deposited onto refractory samples in the same atmospheres as they were originally melted. A comparison between the infiltrations in the CO/CO2 and air atmospheres revealed that differences in oxygen partial pressure changed the mode in which the slag interacted with the refractory. While infiltrations in CO/CO2 atmosphere demonstrated elevated Al2O3 concentrations in the slag owing to refractory dissolution, infiltrations in air atmosphere showed enrichment of SiO2 and Al2O3 in the slag because iron‐oxide from the slag incorporated into the corundum refractory. For both cases, the reactions led to increases in viscosity, but the effect was more profound in the air atmosphere, where penetrations were found to be shallower. The oxygen partial pressure's influence on the slag's composition, primarily with iron‐oxide species, and on viscosity played a pivotal role in governing the effective penetration into the refractory.
Gasifiers are reaction vessels used to process carbon feedstock such as coal and/or petcoke at elevated temperature, high pressure, and in a reducing atmosphere (low oxygen partial pressure) to form CO and H2, called synthesis gas or syngas. Syngas is used as a fuel in power generation or as a feedstock material in chemical production. By-products of the gasification process include unreacted carbon, gases such as CO2 and H2S, and slag formed from mineral impurities or organic metallic compounds in the carbon feedstock that liquefy during gasification. In the gasifier, slags interact with the high chrome oxide refractory liner, causing wear and eventual failure of the refractory lining by two primary means - spalling (structural and chemical) and chemical dissolution. Failure of the refractory lining causes the gasifier to be shut down for repair, with increased service time identified by users as important for greater usage of gasification as an industrial process. Phosphate additions to high chrome oxide refractories have been found to increase service life during commercial service by reducing spalling and lowering chemical dissolution of the refractory liner. The mechanism of how they improve service life is not well understood. The microstructure and physical properties of high chrome oxide refractories with and without phosphate additions removed from a commercial gasifier after approximately eight months of exposure to a coal slag are evaluated in this report, with the emphasis on evaluating slag/refractory interaction in refractory pores. Details of the investigation are presented and possible mechanisms of how phosphate additives improve wear resistance discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.