basadas en técnicas clásicas e inteligencia artificial. Método: Desarrollo de un enfoque híbrido para la eliminación de los efectos del humo quirúrgico, basado en la combinación del método del principio del canal oscuro (DCP, dark channel prior) y una arquitectura de red neuronal píxel a píxel conocida como red antagónica generativa (GAN, generative adversial network). Resultados: Los resultados experimentales han demostrado que el método propuesto logra un mejor rendimiento que los resultados individuales de DCP y GAN en cuanto a calidad de la restauración, obteniendo (según las métricas de la proporción máxima de señal a ruido [PSNR, Peak Signal-to-Noise Ratio] y el índice de similitud estructural [SSIM, Structural Similarity Index]) mejores resultados que otros métodos relacionados. Conclusiones: El enfoque propuesto disminuye los riesgos y el tiempo de la cirugía laparoscópica, ya que una vez que la red está correctamente entrenada, el sistema puede mejorar la visibilidad en tiempo real.Palabras clave: Laparoscopia. Mejoramiento de imágenes. Eliminación de humo. Procesamiento de imágenes. Red antagónica generative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.