PDL1 blockade produces remarkable clinical responses, thought to occur by T cell reactivation through prevention of PDL1-PD1 T cell inhibitory interactions. Here, we find that PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN) cytotoxicity and accelerates tumor progression. PDL1 inhibited IFN signal transduction through a conserved class of sequence motifs that mediate crosstalk with IFN signaling. Abrogation of PDL1 expression or antibody-mediated PDL1 blockade strongly sensitized cancer cells to IFN cytotoxicity through a STAT3/caspase-7-dependent pathway. Moreover, somatic mutations found in human carcinomas within these PDL1 sequence motifs disrupted motif regulation, resulting in PDL1 molecules with enhanced protective activities from type I and type II IFN cytotoxicity. Overall, our results reveal a mode of action of PDL1 in cancer cells as a first line of defense against IFN cytotoxicity.
Programmed cell death-1 ligand-1 (PD-L1) overexpression in cancer cells accelerates tumor progression. PD-L1 possesses two main pro-oncogenic functions. First, PD-L1 is a strong immunosuppressive molecule that inactivates tumor-specific T cells by binding to the inhibitory receptor PD-1. Second, PD-L1 function relies on the delivery of intrinsic intracellular signals that enhance cancer cell survival, regulate stress responses and confer resistance toward pro-apoptotic stimuli, such as interferons. Here, we review the current knowledge on intracellular signal transduction pathways regulated by PD-L1, describe its associated signalosome and discuss potential combinations of targeted therapies against the signalosome with PD-L1/PD-1 blockade therapies.
The use of immune checkpoint inhibitors for the treatment of cancer is revolutionizing oncology. Amongst these therapeutic agents, antibodies that block PD-L1/PD1 interactions between cancer cells and T cells are demonstrating high efficacies and low toxicities. Despite all the recent advances, very little is yet known on the molecular intracellular signaling pathways regulated by either PD-L1 or PD1. Here we review the current knowledge on PD1-dependent intracellular signaling pathways, and the consequences of disrupting PD1 signal transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.