Permeability is the key parameter for quantifying fluid flow in porous rocks. Knowledge of the spatial distribution of the connected pore space allows, in principle, to predict the permeability of a rock sample. However, limitations in feature resolution and approximations at microscopic scales have so far precluded systematic upscaling of permeability predictions. Here, we report fluid flow simulations in pore-scale network representations designed to overcome such limitations. We present a novel capillary network representation with an enhanced level of spatial detail at microscale. We find that the network-based flow simulations predict experimental permeabilities measured at lab scale in the same rock sample without the need for calibration or correction. By applying the method to a broader class of representative geological samples, with permeability values covering two orders of magnitude, we obtain scaling relationships that reveal how mesoscale permeability emerges from microscopic capillary diameter and fluid velocity distributions.
Network function virtualization (NFV) is a novel technology that virtualizes computing, network, and storage resources to decouple the network functions from the underlying hardware, thus allowing the software implementation of such functions to run on commodity hardware. By doing this, NFV provides the necessary flexibility to enable agile, cost-effective, and on-demand service delivery models combined with automated management. Different management and orchestration challenges arise in such virtualized and distributed environments. A major challenge in the selection of the most suitable edge nodes is that of deploying virtual network functions (VNFs) to meet requests from multiple users. This article addresses the VNF placement problem by providing a novel integer linear programming (ILP) optimization model and a novel VNF placement algorithm. In our definition, the multi-objective optimization problem aims to (i) minimize the energy consumption in the edge nodes; (ii) minimize the total latency; and (iii) reducing the total cost of the infrastructure. Our new solution formulates the VNF placement problem by taking these three objectives into account simultaneously. In addition, the novel VNF placement algorithm leverages VNF sharing, which reuses VNF instances already placed to potentially reduce computational resource usage. Such a feature is still little explored in the community. Through simulation, numerical results show that our approach can perform better than other approaches found in the literature regarding resource consumption and the number of SFC requests met.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.