Functionally related brain regions are selectively vulnerable to Alzheimer’s disease pathophysiology. However, molecular markers of this pathophysiology (i.e., beta-amyloid and tau aggregates) have discrepant spatial and temporal patterns of progression within these selectively vulnerable brain regions. Existing reductionist pathophysiologic models cannot account for these large-scale spatiotemporal inconsistencies. Within the framework of the recently proposed cascading network failure model of Alzheimer’s disease, however, these large-scale patterns are to be expected. This model postulates the following: 1) a tau-associated, circumscribed network disruption occurs in brain regions specific to a given phenotype in clinically normal individuals; 2) this disruption can trigger phenotype independent, stereotypic, and amyloid-associated compensatory brain network changes indexed by changes in the default mode network; 3) amyloid deposition marks a saturation of functional compensation and portends an acceleration of the inciting phenotype specific, and tau-associated, network failure. With the advent of in vivo molecular imaging of tau pathology, combined with amyloid and functional network imaging, it is now possible to investigate the relationship between functional brain networks, tau, and amyloid across the disease spectrum within these selectively vulnerable brain regions. In a large cohort (n = 218) spanning the Alzheimer’s disease spectrum from young, amyloid negative, cognitively normal subjects to Alzheimer’s disease dementia, we found several distinct spatial patterns of tau deposition, including ‘Braak-like’ and ‘non-Braak-like’, across functionally related brain regions. Rather than arising focally and spreading sequentially, elevated tau signal seems to occur system-wide based on inferences made from multiple cross-sectional analyses we conducted looking at regional patterns of tau signal. Younger age-of-disease-onset was associated with ‘non-Braak-like’ patterns of tau, suggesting an association with atypical clinical phenotypes. As predicted by the cascading network failure model of Alzheimer’s disease, we found that amyloid is a partial mediator of the relationship between functional network failure and tau deposition in functionally connected brain regions. This study implicates large-scale brain networks in the pathophysiology of tau deposition and offers support to models incorporating large-scale network physiology into disease models linking tau and amyloid, such as the cascading network failure model of Alzheimer’s disease.
The consensus criteria for the diagnosis and classification of primary progressive aphasia (PPA) have served as an important tool in studying this group of disorders. However, a large proportion of patients remain unclassifiable whilst others simultaneously meet criteria for multiple subtypes. We prospectively evaluated a large cohort of patients with degenerative aphasia and/or apraxia of speech using multidisciplinary clinical assessments and multimodal imaging. Blinded diagnoses were made using operational definitions with important differences compared to the consensus criteria. Of the 130 included patients, 40 were diagnosed with progressive apraxia of speech (PAOS), 12 with progressive agrammatic aphasia, 9 with semantic dementia, 52 with logopenic progressive aphasia, and 4 with progressive fluent aphasia, while 13 were unclassified. The PAOS and progressive fluent aphasia groups were least impaired. Performance on repetition and sentence comprehension was especially poor in the logopenic group. The semantic and progressive fluent aphasia groups had prominent anomia, but only semantic subjects had loss of word meaning and object knowledge. Distinct patterns of grey matter loss and white matter changes were found in all groups compared to controls. PAOS subjects had bilateral frontal grey matter loss, including the premotor and supplementary motor areas, and bilateral frontal white matter involvement. The agrammatic group had more widespread, predominantly left sided grey matter loss and white matter abnormalities. Semantic subjects had bitemporal grey matter loss and white matter changes, including the uncinate and inferior occipitofrontal fasciculi, whereas progressive fluent subjects only had left sided temporal involvement. Logopenic subjects had diffuse and bilateral grey matter loss and diffusion tensor abnormalities, maximal in the posterior temporal region. A diagnosis of logopenic aphasia was strongly associated with being amyloid positive, (46/52 positive). Our findings support consideration of an alternative way of identifying and categorizing subtypes of degenerative speech and language disorders.
See Gordon and Tijms (doi:10.1093/brain/awz278) for a scientific commentary on this article. Jack et al. examine relationships between the bivariate distribution of β-amyloid and tau on PET and established neurocognitive clinical syndromes. Amyloidosis appears to be required for high levels of 3R/4R tau deposition. Whereas abnormal amyloid PET is compatible with normal cognition, highly abnormal tau PET is not.
We report a group of patients presenting with a progressive dementia syndrome characterized by predominant dysfunction in core executive functions, relatively young age of onset and positive biomarkers for Alzheimer’s pathophysiology. Atypical frontal, dysexecutive/behavioural variants and early-onset variants of Alzheimer’s disease have been previously reported, but no diagnostic criteria exist for a progressive dysexecutive syndrome. In this retrospective review, we report on 55 participants diagnosed with a clinically defined progressive dysexecutive syndrome with 18F-fluorodeoxyglucose-positron emission tomography and Alzheimer’s disease biomarkers available. Sixty-two per cent of participants were female with a mean of 15.2 years of education. The mean age of reported symptom onset was 53.8 years while the mean age at diagnosis was 57.2 years. Participants and informants commonly referred to initial cognitive symptoms as ‘memory problems’ but upon further inquiry described problems with core executive functions of working memory, cognitive flexibility and cognitive inhibitory control. Multi-domain cognitive impairment was evident in neuropsychological testing with executive dysfunction most consistently affected. The frontal and parietal regions which overlap with working memory networks consistently demonstrated hypometabolism on positron emission tomography. Genetic testing for autosomal dominant genes was negative in all eight participants tested and at least one APOE ε4 allele was present in 14/26 participants tested. EEG was abnormal in 14/17 cases with 13 described as diffuse slowing. Furthermore, CSF or neuroimaging biomarkers were consistent with Alzheimer’s disease pathophysiology, although CSF p-tau was normal in 24% of cases. Fifteen of the executive predominate participants enrolled in research neuroimaging protocols and were compared to amnestic (n = 110), visual (n = 18) and language (n = 7) predominate clinical phenotypes of Alzheimer’s disease. This revealed a consistent pattern of hypometabolism in parieto-frontal brain regions supporting executive functions with relative sparing of the medial temporal lobe (versus amnestic phenotype), occipital (versus visual phenotype) and left temporal (versus language phenotype). We propose that this progressive dysexecutive syndrome should be recognized as a distinct clinical phenotype disambiguated from behavioural presentations and not linked specifically to the frontal lobe or a particular anatomic substrate without further study. This clinical presentation can be due to Alzheimer’s disease but is likely not specific for any single aetiology. Diagnostic criteria are proposed to facilitate additional research into this understudied clinical presentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.