Rotation gains in Virtual Reality (VR) enable the exploration of wider Virtual Environments (VEs) compared to the workspace users have in VR setups. The perception of these gains has been consequently explored through multiple experimental conditions in order to improve redirected navigation techniques. While most of the studies consider rotations, in which participants can rotate at the pace they desire but without translational motion, we have no information about the potential impact of the translational and rotational motions on the perception of rotation gains. In this paper, we estimated the influence of these motions and compared the perceptual thresholds of rotations gains through a user study (𝑛 = 14), in which participants had to perform virtual rotation tasks at a constant rotation speed. Participants had to determine whether their virtual rotation speed was faster or slower than their real one. We varied the translational optical flow (static or forward motion), the rotational speed (20, 30, or 40 deg/s), and the rotational gain (from 0.5 to 1.5). The main results are that the rotation gains are less perceivable at lower rotation speeds and that translational motion makes detection more difficult at lower rotation speeds. Furthermore, the paper provides insights into the user's gaze and body motions behaviour when exposed to rotation gains. These results contribute to the understanding of the perception of rotation gains in VEs and they are discussed to improve the implementation of rotation gains in redirection techniques.
CCS CONCEPTS• Human-centered computing → Virtual reality; User studies.
Virtual steering techniques enable users to navigate in larger Virtual Environments (VEs) than the physical workspace available. Even though these techniques do not require physical movement of the users (e.g. using a joystick and the head orientation to steer towards a virtual direction), recent work observed that users might unintentionally move in the physical workspace while navigating, resulting in Unintended Positional Drift (UPD). This phenomenon can be a safety issue since users may unintentionally reach the physical boundaries of the workspace while using a steering technique. In this context, as a necessary first step to improve the design of navigation techniques minimizing the UPD, this paper aims at analyzing and modeling the UPD during a virtual navigation task. In particular, we characterize and analyze the UPD for a dataset containing the positions and orientations of eighteen users performing a virtual slalom task using virtual steering techniques. Participants wore a head-mounted display and had to follow three different sinusoidal-like trajectories (with low, medium and high curvature) using a torso-steering navigation technique. We analyzed the performed motions and proposed two UPD models: the first based on a linear regression analysis and the second based on a Gaussian Mixture Model (GMM) analysis. Then, we assessed both models through a simulation-based evaluation where we reproduced the same navigation task using virtual agents. Our results indicate the feasibility of using simulation-based evaluations to study UPD. The paper concludes with a discussion of potential applications of the results in order to gain a better understanding of UPD during steering and therefore improve the design of navigation techniques by compensating for UPD.
The perception of rotation gain, defined as a modification of the virtual rotation with respect to the real rotation, has been widely studied to determine detection thresholds and widely applied to redirected navigation techniques. In contrast, Field of View (FoV) restrictions have been explored in virtual reality as a mitigation strategy for motion sickness, although they can alter user's perception and navigation performance in virtual environments. This paper explores whether the use of dynamic FoV manipulations, referred also as vignetting, could alter the perception of rotation gains during virtual rotations in virtual environments (VEs). We conducted a study to estimate and compare perceptual thresholds of rotation gains while varying the vignetting type (no vignetting, horizontal and global vignetting) and the vignetting effect (luminance or blur). 24 Participants performed 60 or 90 degrees virtual rotations in a virtual forest, with different rotation gains applied. Participants have to choose whether or not the virtual rotation was greater than the physical one. Results showed that the point of subjective equality was different across the vignetting types, but not across the vignetting effect or the turns. Subjective questionnaires indicated that vignetting seems less comfortable than the baseline condition to perform the task. We discuss the applications of such results to improve the design of vignetting for redirection techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.