Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.
Since the potential for alloying lithium with silicon is outside the window of stability of common commercial electrolytes, silicon surfaces form an amorphous solid electrolyte interphase (SEI) under applied potential, which hampers silicon's performance as a lithium-ion battery anode. We have investigated the composition, distribution, and ambient stability of the SEI formed on undoped silicon (001) wafers configured as model electrodes in three different electrochemical conditions using a reduced oxidation interface for transporting air-sensitive samples from a glovebox to an ultra-highvacuum chamber for X-ray photoelectron spectroscopy (XPS) analysis. Variable potential cycling and step experiments included linear sweep voltammetry (LSV), cyclic voltammetry (CV), and chronoamperometry (CA). CV and LSV experiments on silicon electrodes scanned from open-circuit voltage to lithiation (3−0.01 V vs Li/Li + ) showed a suppression of carbonate-containing species relative to CA experiments (potential step for 300 s at 0.01 V vs Li/Li + ) in anoxic XPS measurements. When silicon electrodes were exposed to ambient air, SEI layers reacted through both fluorination and combustion processes to produce different SEI product distributions than those prepared under anoxic conditions.
Nickel‐rich layered oxide cathodes with the composition LiNi1−x−yCoxMnyO2 (NCM, (1−x−y) ≥ 0.6) are under intense scrutiny recently to contend with commercial LiNi0.8Co0.15Al0.05O2 (NCA) for high‐energy‐density batteries for electric vehicles. However, a comprehensive assessment of their electrochemical durability is currently lacking. Herein, two in‐house cathodes, LiNi0.8Co0.15Al0.05O2 and LiNi0.7Co0.15Mn0.15O2, are investigated in a high‐voltage graphite full cell over 1500 charge‐discharge cycles (≈5–10 year service life in vehicles). Despite a lower nickel content, NCM shows more performance deterioration than NCA. Critical underlying degradation processes, including chemical, structural, and mechanical aspects, are analyzed via an arsenal of characterization techniques. Overall, Mn substitution appears far less effective than Al in suppressing active mass dissolution and irreversible phase transitions of the layered oxide cathodes. The active mass dissolution (and crossover) accelerates capacity decline with sustained parasitic reactions on the graphite anode, while the phase transitions are primarily responsible for cell resistance increase and voltage fade. With Al doping, on the other hand, secondary particle pulverization is the more limiting factor for long‐term cyclability compared to Mn. These results establish a fundamental guideline for designing high‐performing Ni‐rich NCM cathodes as a compelling alternative to NCA and other compositions for electric vehicle applications.
High-Ni layered oxides are promising next-generation cathodes for lithium-ion batteries owing to their high capacity and lower cost. However, as the Ni content increases over 70 %, they have a high dynamic affinity towards moisture and CO in ambient air, primarily reacting to form LiOH, Li CO , and LiHCO on the surface, which is commonly termed "residual lithium". Air exposure occurs after synthesis as it is common practice to handle and store them under ambient conditions. The air exposure leads to significant performance losses, and hampers the electrode fabrication, impeding their practical viability. Herein, we show that substituting a small amount of Al for Ni in the crystal lattice notably improves the chemical stability against air by limiting the formation of LiOH, Li CO , LiHCO , and NiO in the near-surface region. The Al-doped high-Ni oxides display a high capacity retention with excellent rate capability and cycling stability after being exposed to air for 30 days.
Silicon and partially oxidized silicon thin films with nanocolumnar morphology were synthesized by evaporative deposition at a glancing angle, and their performance as lithium-ion battery anodes was evaluated. The incorporated oxygen concentration was controlled by varying the partial pressure of water during the deposition and monitored by quartz crystal microbalance, X-ray photoelectron spectroscopy. In addition to bulk oxygen content, surface oxidation and annealing at low temperature affected the cycling stability and lithium-storage capacity of the films. By simultaneously optimizing all three, films of ~2200 mAh/g capacity were synthesized. Coin cells made with the optimized films were reversibly cycled for ~120 cycles with virtually no capacity fade. After 300 cycles, 80% of the initial reversible capacity was retained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.