We present a comprehensive study of the most relevant numerical aspects influencing frequencies and intensities in the infrared spectrum of isolated polycyclic aromatic hydrocarbons (PAHs) regarding the overestimate of the IR CH-stretching bands. We use naphthalene as benchmark and show the validity of our results to different members of the PAH family. Our analysis relies on widely employed density functional theory methods and second-order vibrational perturbational theory for the computation of vibrational eigenstates. We have focused on the elucidation of the origin of the systematic overestimate of the intensities in the CH-stretching region. To rule out nonfundamental numerical errors, we have initially considered the influence of the electronic basis set and various other parameters on the different stages of the vibrational analysis. In a second stage, we have benchmarked the results of different density functional theory functionals with respect to the aforementioned overestimate taken as the ratio between the most prominent features of the spectrum, the CH-bending and the CH-stretching bands. Our results unambiguously indicate that the long-range correction plays a major role in this spurious numerical issue. More specifically, this phenomenon is due to an incorrect description of the charge distribution (and hence dipole) within the symmetrically relevant C H bonds. Longrange correction specifically remedies this issue. It improves the description of the intensities in the stretching region while at the same time it does not perturb significantly the rest of the spectrum. With respect to the frequencies, we have observed an overall improvement when compared to noncorrected functionals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.