Malaria caused by Plasmodium affects millions people worldwide. Plasmodium consumes hemoglobin during its intraerythrocytic stage leaving toxic heme. Parasite detoxifies free heme through formation of hemozoin (β-hematin) pigment. Proteolysis of hemoglobin and formation of hemozoin are two main targets for antimalarial drugs. Quinoline antimarial drugs and analogs (β-carbolines or nitroindazoles) were studied as inhibitors of β-hematin formation. The most potent inhibitors were quinacrine, chloroquine, and amodiaquine followed by quinidine, mefloquine and quinine whereas 8-hydroxyquinoline and β-carbolines had no effect. Compounds that inhibited β-hematin increased free hemin that promoted peroxidative reactions as determined with TMB and ABTS substrates. Hemin-catalyzed peroxidative reactions were potentiated in presence of proteins (i.e. globin or BSA) while antioxidants and peroxidase inhibitors decreased peroxidation. Free hemin increased by chloroquine action promoted oxidative reactions resulting in inhibition of proteolysis by three cysteine proteases: papain, ficin and cathepsin B. Glutathione reversed inhibition of proteolysis. These results show that active quinolines inhibit hemozoin and increase free hemin which in presence of H2O2 that abounds in parasite digestive vacuole catalyzes peroxidative reactions and inhibition of cysteine proteases. This work suggests a link between the action of quinoline drugs with biochemical processes of peroxidation and inhibition of proteolysis.
Norharman and harman are naturally occurring β-carboline alkaloids exhibiting a wide range of biological, psychopharmacological, and toxicological actions. They occur in foods and tobacco smoke and also appear endogenously in humans. In this research, metabolic and kinetic studies with cytochrome P450 enzymes and human liver microsomes showed that β-carbolines were efficiently oxidized to several ring-hydroxylated and N-oxidation products that were subsequently identified and quantified. 6-Hydroxyβ-carboline (6-hydroxynorharman and 6-hydroxyharman) was a major metabolite efficiently produced (high k cat and low K m ) by P450 1A2 and 1A1 and to a minor extent by P450 2D6, 2C19 and 2E1. 3-Hydroxy-β-carboline (3-hydroxynorharman and 3-hydroxyharman), another major metabolite, was specifically produced by P450 1A2 and 1A1, whereas β-carboline-N(2)-oxide (harman-2-oxide and norharman-2-oxide) was produced by P450 2E1. The same pattern of metabolism was confirmed for human liver microsomes. Oxidative metabolism for harman was slightly higher than norharman, but norharman showed lower K m values. The oxidation of β-carbolines is a detoxication route performed mainly by P450 1A2 and 1A1, with the participation of P450 2D6, 2C19, and 2E1, as additional contributors. Then, individual variations in the levels and activity of these P450s may influence biotransformation of β-carboline alkaloids and their ultimate biological effects. β-Carbolines were previously reported as comutagens and/or inhibitors of mutagens activated by P450 1A enzymes such as heterocyclic amines and polycyclic hydrocarbons. Results in this work show that β-carbolines are good ligands and substrates for P450 1A2/1A1, contributing to the explanation of some of their toxicological effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.